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Abstract

The transformation of a Laguerre series f (z) = ∑∞
n=0 λ(α)

n L(α)
n (z) to a power

series f (z) = ∑∞
n=0 γnz

n is discussed. Since many nonanalytic functions
can be expanded in terms of generalized Laguerre polynomials, success is
not guaranteed and such a transformation can easily lead to a mathematically
meaningless expansion containing power series coefficients that are infinite
in magnitude. Simple sufficient conditions based on the decay rates and
sign patterns of the Laguerre series coefficients λ(α)

n as n → ∞ can be
formulated which guarantee that the resulting power series represents an
analytic function. The transformation produces a mathematically meaningful
result if the coefficients λ(α)

n either decay exponentially or factorially as n → ∞.
The situation is much more complicated—but also much more interesting—if
the λ(α)

n decay only algebraically as n → ∞. If the λ(α)
n ultimately have the

same sign, the series expansions for the power series coefficients diverge,
and the corresponding function is not analytic at the origin. If the λ(α)

n

ultimately have strictly alternating signs, the series expansions for the power
series coefficients still diverge, but are summable to something finite, and the
resulting power series represents an analytic function. If algebraically decaying
and ultimately alternating Laguerre series coefficients λ(α)

n possess sufficiently
simple explicit analytical expressions, the summation of the divergent series
for the power series coefficients can often be accomplished with the help of
analytic continuation formulae for hypergeometric series p+1Fp, but if the λ(α)

n

have a complicated structure or if only their numerical values are available,
numerical summation techniques have to be employed. It is shown that
certain nonlinear sequence transformations—in particular the so-called delta
transformation (Weniger 1989 Comput. Phys. Rep. 10 189–371 (equation (8.4-
4)))—are able to sum the divergent series occurring in this context effectively.
As a physical application of the results of this paper, the legitimacy of the
rearrangement of certain one-range addition theorems for Slater-type functions
(Guseinov 1980 Phy. Rev. A 22 369–71, Guseinov 2001 Int. J. Quantum Chem.
81 126–29, Guseinov 2002 Int. J. Quantum Chem. 90 114–8) is investigated.
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1. Introduction

The generalized Laguerre polynomials L(α)
n (z), whose most relevant properties are reviewed in

section 2, are a very important class of orthogonal polynomials with numerous mathematical
and physical applications. There is an extensive literature both on their mathematical
properties as well as on their applications, and any attempt of providing a reasonably complete
bibliography would be hopeless. Let me just mention that the radial parts of bound-state
hydrogen eigenfunctions and of several other physically relevant complete and orthonormal
sets of function f : R

3 → C are essentially generalized Laguerre polynomials (see, for
example, [138, sections IV and V], and references therein).

As discussed in more detail in section 2, the generalized Laguerre polynomials L(α)
n (z)

form a complete orthogonal polynomial system in the weighted Hilbert space L2
zα e−z ([0,∞))

defined by (2.7), which is based on an integration over the interval [0,∞) involving the weight
function w(z) = zα exp(−z). Accordingly, the topic of this paper are infinite Laguerre series
of the following type:

f (z) =
∞∑

n=0

λ(α)
n L(α)

n (z), (1.1a)

λ(α)
n = n!

�(α + n + 1)

∫ ∞

0
zα e−zL(α)

n (z)f (z) dz. (1.1b)

The expansion coefficients λ(α)
n are essentially inner products, utilizing the orthogonality and

the completeness of the generalized Laguerre polynomials in L2
zα e−z ([0,∞)).

Not all expansions in terms of generalized Laguerre polynomials can be interpreted in
a Hilbert space setting. There are expansions of special functions in terms of generalized
Laguerre polynomials with variable and index-dependent superscripts. A simple example is
the generating function [104, p 242]

∞∑
n=0

L(α−n)
n (x)tn = e−xt (1 + t)α, |t | < 1. (1.2)
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Expansions of that kind cannot be derived via a straightforward application of the orthogonality
of the generalized Laguerre polynomials. In the paper by Sánchez-Ruiz et al [115],
transformation formulae for generalized hypergeometric series were employed for the
construction of Laguerre expansions with variable superscripts. However, nonorthogonal
Laguerre expansions of that kind are not the topic of this paper.

It is generally accepted that orthogonal expansions are extremely useful mathematical
tools and that they have many highly advantageous features. This is, however, not the
whole truth, in particular if we want to approximate functions. There are situations in which
alternative representations are (much) more useful. Hilbert space theory only guarantees that
an orthogonal expansion converges in the mean with respect to the corresponding norm, but not
necessarily pointwise or even uniformly. Therefore, orthogonal expansions are not necessarily
the best choice if we are interested in local properties of functions.

Convergence in the mean is—although completely satisfactory for many purposes such
as the evaluation of integrals—a comparatively weak form of convergence. In practice, it is
therefore often desirable or even necessary to construct alternative representations possessing
more convenient properties (see also the discussion in [48]).

A very desirable feature of functions f : C → C is analyticity in the sense of complex
analysis. This means that a function f can be represented in a neighborhood of the origin by
a convergent power series,

f (z) =
∞∑

n=0

γnz
n, (1.3)

and that the coefficients γn of this power series essentially correspond to the derivatives of f

at z = 0.
If the function f defined by the Laguerre series (1.1) is explicitly known, it is usually not

too difficult to decide whether f is analytic or not, and if f is analytic it is normally not too
difficult to construct at least the leading terms of its power series expansion (1.3).

Unfortunately, the situation is not always so good, and it can even happen that only the
numerical values of a finite number of expansion coefficients λ(α)

n in (1.1) are known. In
such a case, it would certainly be helpful if we could relate the properties of the expansion
coefficients λ(α)

n —in particular their decay rate and their sign pattern—to the analyticity of
the function f (z) defined by the Laguerre series (1.1). It would also be helpful if we could
construct at least the leading power series coefficients γn—either exactly or in an approximate
sense—from the coefficients λ(α)

n of the Laguerre series (1.1).
Pollard [109], Szász and Yeardley [127] and Rusev [114] had investigated Laguerre

expansions of the type of (1.1) of analytic functions and analyzed their regions of convergence.
However, the inverse problem—the formulation of criteria which guarantee that a Laguerre
expansion of the type of (1.1) represents a function analytic in a neighborhood of the origin—
seems to be essentially unexplored. I am only aware of short remarks by Gottlieb and Orszag
[51, p 42] and by Doha [43, p 5452], respectively, who stated without detailed proof that such
a Laguerre series converges faster than algebraically if the function under consideration is
analytic at the origin.

Many Laguerre series are known which seem to confirm the claim of Gottlieb and Orszag
and of Doha, respectively. The probably most simple example is the well-known generating
function (1 − t)−α−1 exp(zt/[t − 1]) of the Laguerre polynomials. For |t | < 1, it is an entire
function, and the coefficients of its Laguerre series (5.8) decay exponentially for |t | < 1.

Another example is the Laguerre series (3.3) for the general power function zρ with
nonintegral ρ ∈ R\N0. Obviously, zρ with ρ ∈ R\N0 is not analytic at z = 0. The series

3
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coefficients in (3.3) decay algebraically and possess for sufficiently large indices the same
sign. As shown in section 3, it is nevertheless possible to transform the Laguerre series (3.3)
for zρ with ρ ∈ R\N0 to the formal power series (3.7). However, the formal power series
(3.7) is not a mathematically meaningful object: for sufficiently large indices, the power
series coefficients in (3.7) are according to (3.9) all infinite in magnitude. Thus, the Laguerre
series (3.3) for zρ with ρ ∈ R\N0 also agrees with the claim of Gottlieb and Orszag and of
Doha, respectively.

If, however, we augment the Laguerre series (3.3) for zρ by an additional alternating sign
(−1)n, we obtain the Laguerre series (4.7). Its transformation to a power series yields according
to (4.12) a confluent hypergeometric function 1F1(−ρ;α+1; z/2), which for Re(α) > −1 is an
entire function. The coefficients in the Laguerre series (4.7) decay algebraically in magnitude.
This implies that the transformation of (4.7) to a power series leads to power series coefficients
γn that are represented by divergent series expansions. However, the alternating sign (−1)n

in (4.7) makes it possible to associate finite values to these divergent series, i.e., the series
expansions for the power series coefficients are now summable. Thus, we obtain a function,
which is analytic at z = 0 and which does not agree with the claim of Gottlieb and Orszag and
of Doha, respectively.

The example of the closely related Laguerre series (3.3) and (4.7) shows that it makes
a huge difference if Laguerre series coefficients λ(α)

n , that decay algebraically in magnitude,
ultimately have strictly alternating or strictly monotone signs. Thus, the claim of Gottlieb and
Orszag and of Doha, respectively, is imprecise and ignores the pivotal role of divergent, but
summable series expansions for the power series coefficients γn in (1.3). Some basic facts
about the summation of divergent series are reviewed in appendix A.

A detailed investigation of the analyticity of functions represented by Laguerre expansions
of the type of (1.1) is the topic of this paper. The central result is the transformation formula
(3.14), which yields a formal power series expansion for a function represented by a Laguerre
expansion. The crucial question is whether the inner μ series in (3.14) for the power series
coefficients γn converge. If these μ series do not converge and are also not summable
to something finite, then the function under consideration is not analytic at the origin and
the resulting formal power series is mathematically meaningless since contains coefficients γn

which are infinite in magnitude. Consequently, it is comparatively easy to relate the analyticity
of a function f represented by a Laguerre series at the origin z = 0 with the decay rate and
the sign pattern of its coefficients λ(α)

n .
Analytical manipulations can only lead to closed form expressions for the power series

coefficients γn if the Laguerre series coefficients λ(α)
n possess a sufficiently simple structure.

This undeniable fact may create the false impression that the formalism developed in this paper
is restricted to Laguerre series with very simple coefficients λ(α)

n , and that this formalism is
at best suited for an alternative rederivation of known generating functions of the generalized
Laguerre polynomials.

As discussed in section 6, it is, however, often possible to construct numerical
approximations to the leading power series coefficients γn from the coefficients λ(α)

n of the
Laguerre series, even if the inner μ series in (3.14) diverges. The necessary summations
can be done effectively with the help of certain nonlinear sequence transformations—Wynn’s
epsilon algorithm (B.4) and the two Levin-type transformations (B.14) and (B.15)—whose
basic properties are reviewed in appendix B. While Wynn’s epsilon algorithm (B.4), which
produces Padé approximants if the input data are the partial sums of a power series, is now
fairly well known among (applied) mathematicians and theoretical physicists, the Levin-type
transformations (B.14) and (B.15), which in some cases were found to be remarkably powerful,
are not nearly as well known as they deserve to be.

4



J. Phys. A: Math. Theor. 41 (2008) 425207 E J Weniger

As a physical application of the mathematical formalism developed in this paper, the
legitimacy of rearrangements of certain one-range addition theorems for Slater-type functions
with in general nonintegral principal quantum numbers performed by Guseinov [55, 56, 58]
is investigated in section 7. It is shown that the one-center limits of Guseinov’s rearranged
addition theorems do not exist if the principal quantum numbers of the Slater-type functions
are nonintegral.

2. Generalized Laguerre polynomials

The generalized Laguerre polynomials L(α)
n (z) with n ∈ N0 and Re(α) > −1 are orthogonal

polynomials associated with the integration interval [0,∞) and the weight function w(z) =
zα exp(−z).

In this paper, the mathematical notation for generalized Laguerre polynomials (see, for
example, [104, chapter 5.5]) is used. Additional conventions, as used predominantly in older
books and papers on quantum theory, were discussed by Kaijser and Smith [89, footnote 1,
p 48] and also in [154, section 4].

The generalized Laguerre polynomials possess an explicit expression as a terminating
confluent hypergeometric series [104, p 240],

L(α)
n (z) = (α + 1)n

n!
1F1(−n;α + 1; z), (2.1)

and they can also be defined via their Rodrigues relationship [104, p 241]

L(α)
n (z) = z−α ez

n!

dn

dzn
[e−zzn+α]. (2.2)

In the special case α = 0, it is common to drop the superscript since we obtain the usual
Laguerre polynomials [104, p 239]

Ln(z) = L(0)
n (z), n ∈ N0. (2.3)

Either the explicit expression (2.1) or the Rodrigues relationship (2.2) can be used to define
generalized Laguerre polynomials with essentially arbitrary complex values of the superscript
α. But in the orthogonality relationship of the generalized Laguerre polynomials [104, p 241]∫ ∞

0
zα e−zL(α)

m (z)L(α)
n (z) dz = �(α + n + 1)

n!
δmn, m, n ∈ N0, (2.4)

it is necessary to assume Re(α) > −1 because otherwise this integral does not exist. However,
as discussed by Kochneff [97], this condition can be relaxed if this and related integrals are
reinterpreted as Hadamard finite part integrals.

In the vast majority of calculations involving generalized Laguerre polynomials, the
superscript α is real and also positive. In practice, more general complex values of α play a
negligible rule. Therefore, in the following text it is always tacitly assumed that all integrals
exist in the ordinary sense, which avoids the complications of Hadamard finite part integrals,
and that the superscript α of a generalized Laguerre polynomial is a real number satisfying
α > −1.

The orthogonality relationship (2.4) suggests the introduction of the following inner
product containing the weight function w(z) = zα exp(−z) for functions f, g: C → C:

(f |g)zα e−z,2 =
∫ ∞

0
zα e−z[f (z)]∗g(z) dz. (2.5)

This inner product gives rise to the norm

‖f ‖zα e−z,2 =
√

(f |f )zα e−z,2. (2.6)

5
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We then obtain the following Hilbert space of square integrable functions:

L2
zα e−z ([0,∞)) =

{
f : C → C

∣∣∣∣
∫ ∞

0
zα e−z|f (z)|2 dz < ∞

}
= {f : C → C|‖f ‖zα e−z,2 < ∞}. (2.7)

The completeness of the generalized Laguerre polynomials in this weighted Hilbert space
is a classic result of mathematical analysis (see, for example, [81, p 33], [116, pp 349–51], or
[132, pp 235–8]). Thus, the normalized polynomials

L (α)
n (z) =

[
n!

�(α + n + 1)

]1/2

L(α)
n (z), n ∈ N0, (2.8)

are a complete and orthonormal polynomial system in L2
zα e−z ([0,∞)), satisfying∫ ∞

0
zα e−zL (α)

m (z)L (α)
n (z) dz = δmn. (2.9)

Accordingly, every f ∈ L2
zα e−z ([0,∞)) can be expanded in terms of the normalized

polynomials
{
L (α)

n (z)
}∞

n=0,

f (z) =
∞∑

n=0

C (α)
n L (α)

n (z), (2.10a)

C (α)
n =

∫ ∞

0
zα e−zL (α)

n (z)f (z) dz. (2.10b)

This expansion in terms of the normalized polynomials L (α)
n (z), which converges in the mean

with respect to the norm (2.6), is nothing but the Laguerre series (1.1) in disguise. In agreement
with (2.8), we only have to choose

C (α)
n =

[
�(α + n + 1)

n!

]1/2

λ(α)
n (2.11)

to see that expansions (1.1) and (2.10) are identical.
Let me emphasize once more that Laguerre expansions converge in general only in the

mean, but not necessarily pointwise (see, for example, [2]). Additional conditions, which
a function has to satisfy in order to guarantee that its Laguerre expansion also converges
pointwise, were discussed by Szegö [128, theorem 9.1.5, p 246].

Hilbert space theory can be used to derive sufficient criteria, which the coefficients λα
n

or C (α)
n have to satisfy in order to guarantee that the equivalent expansions (1.1) and (2.10)

converge in the mean. The basic requirement is that the norm (2.6) of both f and its Laguerre
expansion (2.10) must be finite,

‖f ‖zα e−z,2 =
{ ∞∑

n=0

∣∣C (α)
n

∣∣2

}1/2

< ∞. (2.12)

It follows from (2.11) that this condition can also be reformulated as follows:

‖f ‖zα e−z,2 =
{ ∞∑

n=0

�(α + n + 1)

n!

∣∣λ(α)
n

∣∣2

}1/2

< ∞. (2.13)

A sufficient condition, which guarantees that the infinite series
∑∞

n=0

∣∣C (α)
n

∣∣2
in (2.12)

converges, is ∣∣C (α)
n

∣∣2 ∼ n−1−ε, n → ∞, ε > 0. (2.14)

6
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It follows from (2.11) and (2.14) that the Laguerre series (1.1) converges in the mean if its
coefficients λ(α)

n satisfy

�(α + n + 1)

n!

∣∣λ(α)
n

∣∣2 ∼ n−1−ε, n → ∞, ε > 0. (2.15)

Now, we need the asymptotic approximation [1, equation (6.1.47), p 257]

�(z + a)/�(z + b) = za−b[1 + O(1/z)], z → ∞, (2.16)

which is the leading term of an asymptotic expansion first derived by Tricomi and Erdélyi
[133] that holds—as emphasized by Olver [106, p 119]—without restrictions on a, b ∈ C.
Thus, we obtain

�(α + n + 1)

n!
∼ nα + O(nα−1), n → ∞. (2.17)

This translates to the sufficient convergence condition that
∣∣λ(α)

n

∣∣ must decay like∣∣λ(α)
n

∣∣ ∼ n−[α+ε+1]/2, n → ∞, ε > 0, (2.18)

or faster. If this asymptotic condition is satisfied, then the Laguerre series (1.1) for f (z)

converges in the mean with respect to the norm (2.6) of the Hilbert space L2
e−zzα ([0,∞)).

The sufficient convergence condition (2.18) shows that the coefficients λ(α)
n can decay

extremely slowly, which translates to a possibly extremely slow convergence of Laguerre
series of the type of (1.1). Thus, it would be overly optimistic to assume that all Laguerre
series are necessarily computationally useful.

3. The Laguerre series for the general power function

In the theory of orthogonal expansions, which converge in the mean with respect to the norm
‖ · ‖ of some Hilbert space H , the decisive criterion is that the function, which is to be
expanded, has to belong to H . Consequently, any function f : C → C with finite norm
(2.6) belongs to the weighted Hilbert space L2

zα e−z ([0,∞)) and can be expanded in terms of
generalized Laguerre polynomials according to (1.1). The resulting expansion (1.1) converges
in the mean with respect to the norm (2.6) of the Hilbert space L2

zα e−z ([0,∞)).
The existence and convergence of a Laguerre series of the type of (1.1) does not allow

any conclusion about the analyticity of the corresponding function. The weighted Hilbert
space L2

zα e−z ([0,∞)) contains many functions that are obviously not analytic at the origin.
Therefore, attempts of constructing a power series from the Laguerre series can easily lead to
a disaster. The complications, which can occur in this context, can be demonstrated via the
general power function zρ with nonintegral ρ ∈ R\N0.

In integrals over the positive real semi-axis, the weight function zα e−z becomes at least
for Re(α) > 0 very small both as z → 0 and as z → ∞. Consequently, zα e−z suppresses
in the inner product (2.5) the contribution of the remaining integrand for small and large
arguments. Therefore, the general power function zρ with ρ ∈ R\N0 possesses at least for
sufficiently large values of α an expansion of the type of (1.1) in terms of generalized Laguerre
polynomials. The existence of this expansion is guaranteed if zρ belongs to the Hilbert space
L2

zα e−z ([0,∞)), or equivalently, if∣∣∣∣
∫ ∞

0
zα+2ρ e−z dz

∣∣∣∣ < ∞ (3.1)

holds. Thus, we have to require that α + 2ρ > −1 holds.

7
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For the construction of a Laguerre series for zρ , we only need the integral [52,
equation (7.414.7), p 850]∫ ∞

0
e−st tβL(α)

n (t) dt = �(β + 1)�(α + n + 1)

n!�(α + 1)
s−β−1

2F1(−n, β + 1;α + 1; 1/s),

Re(β) > −1, Re(s) > 0, (3.2)

to obtain after some essentially straightforward algebra [45, equation (16), p 214]

zρ = �(ρ + α + 1)

�(α + 1)

∞∑
n=0

(−ρ)n

(α + 1)n
L(α)

n (z), ρ ∈ R\N0, α + 2ρ > −1. (3.3)

If we set ρ = m with m ∈ N0, then the infinite series on the right-hand side terminates because
of the Pochhammer symbol (−m)n and we obtain the following finite sum (see, for example,
[112, equation (2), p 207]):

zm = (α + 1)m

m∑
n=0

(−m)n

(α + 1)n
L(α)

n (z), m ∈ N0, α + 2m > −1. (3.4)

Although intimately related, there are nevertheless some fundamental differences between
the two Laguerre expansions (3.3) and (3.4). The finite sum formula (3.4) is a relationship
among polynomials and therefore certainly valid pointwise for arbitrary z ∈ C as well as
analytic at the origin in the sense of complex analysis.

In the case of the infinite series expansion (3.3), we only know that it converges in the
mean with respect to the norm (2.6), but we have no a priori reason to assume that this
expansion might converge pointwise for arbitrary ρ ∈ R\N0. Moreover, zρ with ρ ∈ R\N0 is
not analytic at the origin.

The validity of the finite sum (3.4) can be checked by inserting the explicit expression
(2.1) for the generalized Laguerre polynomials. If we then rearrange the order of the two
nested sums, we obtain after some algebra

zm = (α + 1)m

m∑
k=0

(−1)k
(−m)k

(α + 1)k

zk

k!

m−k∑
ν=0

(−1)ν
(

m − k

ν

)
. (3.5)

Next, we use the relationship [1, equation (3.1.7), p 10]

n∑
k=0

(−1)k
(

n

k

)
= δn0, n ∈ N0, (3.6)

for binomial sums, which shows that the inner sum in (3.5) vanishes unless we have k = m.
Thus, we only need (−1)m(−m)m = (1)m = m! to arrive at the trivial identity zm = zm which
proves the correctness of (3.4).

In the case of the infinite series (3.3) for zρ with ρ ∈ R\N0, we can also insert the explicit
expression (2.1) for the generalized Laguerre polynomials into it and rearrange the order of
summations. We then obtain after some algebra

zρ = �(ρ + α + 1)

�(α + 1)

∞∑
k=0

(−1)k
(−ρ)k

(α + 1)k

zk

k!
1F0(k − ρ; 1). (3.7)

Superficially, it looks as if we succeeded in constructing a power series expansion for the in
general nonintegral power zρ . However, the generalized hypergeometric series 1F0 with unit

8
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argument is the limiting case z → 1 of the so-called binomial series [104, p 38]

1F0(a; z) =
∞∑

m=0

(−a

m

)
(−z)m = (1 − z)−a, |z| < 1. (3.8)

If we set a = k − ρ with k ∈ N0 and ρ ∈ R\N0, we obtain for the hypergeometric series 1F0

in (3.7),

1F0(k − ρ; 1) = lim
z→1

(1 − z)ρ−k =
⎧⎨
⎩

∞, ρ < 0,

0, k < ρ � 0,

∞, k > ρ � 0.

(3.9)

Thus, disaster struck and the power series (3.7) contain infinitely many series coefficients that
are infinite in magnitude.

I am aware of a paper by Villani [136] who tried to make sense of perturbation expansions
with divergent terms. Since, however, this is the only paper on this topic, which I am aware of,
I am tempted to believe that Villani’s approach was not overly fertile. Therefore, I will stick
to the usual mathematical convention that a power series with coefficients, that are infinite in
magnitude, does not exist as a mathematically meaningful object.

It is important to note that series with divergent terms and divergent series are not the
same. In the case of divergent series, all terms are finite, but the conventional process of
adding up the terms successively does not lead to a convergent result. Nevertheless, it is often
possible to associate a finite value to a divergent series with the help of a suitable summation
technique. As reviewed in appendix A, divergent series and their summation have been and
to some extent still are a highly controversial topic. The summation of divergent series plays
a major role in sections 4 and 6.

Since the hypergeometric series 1F0(k − ρ; 1) in (3.7) does not converge for all indices
k, the Laguerre series (3.3) for zρ with ρ ∈ R\N0 cannot be reformulated as a power series in
z by interchanging the order of summations. Of course, this is a mathematical necessity: the
general power function zρ with ρ ∈ R\N0 is not analytic at the origin, which implies that a
power series about z = 0 cannot exist.

So far, the analysis of this section has only produced obvious results and no new insight:
the integral power zm with m ∈ N0 is analytic at the origin. Consequently, it must be possible to
reformulate its finite Laguerre expansion (3.4) as a polynomial in z. In contrast, the nonintegral
power zρ with ρ ∈ R\N0 is not analytic at the origin. Accordingly, a power series for zρ

about z = 0 cannot exist. At least formally, the infinite Laguerre expansion (3.3) for zρ can be
rearranged to yield the power series (3.7), but this power series is mathematically meaningless
since almost all of its series coefficients are infinite in magnitude.

Nevertheless, the example of the general power function zρ is instructive since it shows
that mathematics cannot be cheated by formally rearranging Laguerre series. Therefore, we
can try to use the approach described above also in the case of essentially arbitrary infinite
Laguerre series of the type of (1.1). We insert the explicit expression (2.1) of the generalized
Laguerre polynomial into the Laguerre series for some function, and rearrange the order of
summations. As a final step, we have to analyze whether and under which conditions the inner
infinite series expansions for the coefficients of the resulting the power series converge.

But first, let us consider a partial sum of the general Laguerre series (1.1),

fN(z) =
N∑

n=0

λ(α)
n L(α)

n (z), N ∈ N0. (3.10)

Such a finite sum is simply a polynomial in z and it is always possible to reformulate
it by interchanging the order of the nested finite summations. If we insert the explicit

9
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expression (2.1) of the generalized Laguerre polynomials into (3.10) and rearrange the order
of summations, we obtain after some algebra

fN(z) =
N∑

n=0

λ(α)
n

(α + 1)n

n!

n∑
ν=0

(−n)ν

(α + 1)ν

zν

ν!
(3.11)

=
N∑

ν=0

zν

(α + 1)νν!

N∑
n=ν

(−n)ν(α + 1)n

n!
λ(α)

n . (3.12)

This expression can be streamlined further, yielding

fN(z) =
N∑

ν=0

(−z)ν

ν!

N−ν∑
μ=0

(α + ν + 1)μ

μ!
λ(α)

μ+ν. (3.13)

Thus, in the case of finite Laguerre expansions of the type of (3.10), a rearrangement of the
order of the nested finite summations is always possible.

Let us now consider the rearrangement of the infinite series (1.1). By inserting the explicit
expression (2.1) of the generalized Laguerre polynomials into (1.1) and rearranging the order
of summations, we formally obtain the following power series in z:

f (z) =
∞∑

ν=0

(−z)ν

ν!

∞∑
μ=0

(α + ν + 1)μ

μ!
λ(α)

μ+ν . (3.14)

If we compare (3.13) and (3.14), we immediately see that the rearrangement of an infinite
Laguerre expansion is not necessarily possible since we now have an inner infinite series
instead of an inner finite sum. Accordingly, many things can go wrong if we mechanically
perform the limit N → ∞ in (3.13). The power series (3.14) for f (z) makes sense if and only
if the inner series on the right-hand side of (3.14) converges for every ν ∈ N0. Otherwise, we
have a formal power series with expansion coefficients that are infinite in magnitude. This
scenario corresponds to the formal, but mathematically meaningless power series (3.7) for zρ

with ρ ∈ R\N0.

4. Algebraically decaying series coefficients

In this section, the convergence of the inner μ series in the rearranged Laguerre expansion
(3.14) is analyzed by making several assumptions on the large index (n → ∞) asymptotics
of the coefficients λ(α)

n .
The sufficient convergence condition (2.18) shows that the coefficients λ(α)

n in (1.1) can
decay algebraically in n, which in practice implies (very) bad convergence. Thus, let us
assume for the moment that the λ(α)

n all have the same sign at least for sufficiently large indices
n, and that they possess the following large index asymptotics:

λ(α)
n ∼ n−β, n → ∞, β > 0. (4.1)

For an analysis of the convergence of the inner μ series, it is helpful to rewrite (3.14) as
follows:

f (x) = 1

�(α + 1)

∞∑
ν=0

(−x)ν

(α + 1)νν!

∞∑
μ=0

�(α + μ + ν + 1)

μ!
λ(α)

μ+ν . (4.2)

We first analyze the large index asymptotics of the factor �(α + μ + ν + 1)/μ!. With the help
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of (2.16), we obtain for fixed and finite ν ∈ N0 the following asymptotic approximation:

�(α + μ + ν + 1)

μ!
∼ μα+ν, μ → ∞. (4.3)

For fixed and finite ν ∈ N0, the asymptotic estimate (4.1) translates to

λ(α)
μ+ν ∼ (μ + ν)−β = μ−β + O(μ−β−1), μ → ∞. (4.4)

Combination of (4.3) and (4.4) yields

�(α + μ + ν + 1)

μ!
λ(α)

μ+ν ∼ μα+ν−β, μ → ∞. (4.5)

Thus, the inner μ series in (3.14) diverges at least for sufficiently large values of the outer
index ν if the series coefficients λ(α)

n occurring in (3.14) ultimately have the same sign and
decay algebraically like a fixed power β of the index n. Thus, a function represented by a
Laguerre expansion with ultimately monotone and algebraically decaying series coefficients
cannot be analytic in a neighborhood of the origin. This conclusion is in agreement with the
remarks by Gottlieb and Orszag [51, p 42] and by Doha [43, p 5452], respectively, who had
stated that the Laguerre series for a given function converges faster than algebraically if the
function under consideration is analytic at the origin.

As discussed in more details in section 3, the general power function zρ with ρ ∈ R\N0

is not analytic at the origin. This fact can also be deduced from its Laguerre series (3.3).
With the help of (2.16), we obtain the following leading order asymptotic estimate for the
coefficients in (3.3):

�(−ρ + n)

�(α + n + 1)
∼ n−α−ρ−1, n → ∞. (4.6)

Comparison with (2.18) shows that this asymptotic estimate implies the convergence of the
Laguerre series (3.3) for zρ with respect to the norm (2.6) of the Hilbert space L2

xα e−x ([0,∞))

if α + 2ρ > −1 holds. However, this estimate also shows that zρ with ρ ∈ R\N0 cannot be
analytic at the origin z = 0.

The convergence properties of monotone and alternating series differ substantially. A
monotone series

∑∞
n=0 an, whose terms all have the same sign, converges, if the series terms an

decay at least like an = O(n−1−ε) with ε > 0 as n → ∞ or faster. In contrast, an alternating
series

∑∞
n=0(−1)n|bn| converges if the terms bn decrease in magnitude and approach zero as

n → ∞. This alone would not suffice to guarantee the convergence of the inner μ series in
(3.14). However, alternating series have the undeniable advantage that summability techniques
for divergent series can be employed (further details as well as numerous references can be
found in appendices A and B). In this way, it is frequently possible to associate a finite value
to a divergent alternating series

∑∞
n=0(−1)n|bn|, whose terms do not vanish as n → ∞ and

even grow in magnitude with increasing index.
Thus, it should be interesting to investigate whether Laguerre series of the type of (1.1) with

strictly alternating series coefficients λ(α)
n , whose absolute values are at least asymptotically

proportional to a fixed power of the index n, correspond to functions that are analytic in a
neighborhood of the origin.

As an example of a Laguerre series with ultimately strictly alternating and algebraically
decaying coefficients, let us consider the following Laguerre series, which differs from the
Laguerre series (3.3) for the general power function zρ only by the alternating sign (−1)n:

G(α)
ρ (z) = �(ρ + α + 1)

�(α + 1

∞∑
n=0

(−1)n
(−ρ)n

(α + 1)n
L(α)

n (z),

ρ ∈ R\N0, α + 2ρ > −1. (4.7)

11
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The convergence condition α + 2ρ > −1 guarantees that G(α)
ρ (z) belongs just like the power

function zρ with ρ ∈ R\N0 to the Hilbert space L2
xα e−x ([0,∞)). The case ρ ∈ N0 is excluded

because then G(α)
ρ would be a polynomial in z, whose analyticity at the origin is obvious.

It is, however, unclear whether G(α)
ρ (z) with ρ ∈ R\N0 is analytic at the origin, i.e.,

whether the inner μ series in the rearranged Laguerre series (3.14) converges for arbitrary
values of ν ∈ N0. For an investigation of this question, let us define

λ(α)
n = (−1)n

�(ρ + α + 1)

�(−ρ)

�(−ρ + n)

�(α + n + 1)
. (4.8)

Inserting this into the modified rearranged Laguerre expansion (4.2) yields

G(α)
ρ (z) = �(ρ + α + 1)

�(α + 1)

∞∑
ν=0

(−ρ)ν

(α + 1)ν

zν

ν!

∞∑
μ=0

(−1)μ
(−ρ + ν)μ

μ!
(4.9)

= �(ρ + α + 1)

�(α + 1)

∞∑
ν=0

(−ρ)ν

(α + 1)ν

zν

ν!
1F0

(−ρ + ν;−1
)
. (4.10)

The generalized hypergeometric series 1F0 in (4.10) is a special case of the binomial series
(3.8) which can be expressed in close form. Thus, we obtain

1F0(−ρ + ν;−1) = lim
z→−1

(1 − z)ρ−ν = 2ρ−ν . (4.11)

Since (2.16) implies (−ρ + ν)μ/μ! = O(μν−ρ−1) as μ → ∞, the hypergeometric series
1F0(−ρ + ν; z) converges only for |z| < 1. Thus, 1F0(−ρ + ν;−1) is—strictly speaking—
undefined and a divergent series. However, (1 − z)n−ρ remains well defined as z → −1.
Therefore, (4.11) essentially corresponds to an analytic continuation that implicitly uses the
concepts of Abel summation which is for instance discussed in Hardy’s classic book [80].

Inserting (4.11) into (4.10) yields

G(α)
ρ (z) = 2ρ �(ρ + α + 1)

�(α + 1)
1F1(−ρ;α + 1; z/2). (4.12)

A confluent hypergeometric series 1F1(a; b; z) converges absolutely for all complex a, b, and
z as long as −b /∈ N0 (see, for example, [121, p 2]). Thus, for −b /∈ N0 such a 1F1 is an entire
function in z. Since we always assume α > −1,G(α)

ρ (z) is in every neighborhood of the origin
z = 0 an analytic function. Thus, (4.12) shows that the remarks by Gottlieb and Orszag [51,
p 42] and by Doha [43, p 5452], who stated that such a Laguerre series converges faster than
algebraically if the function under consideration is analytic at the origin, is imprecise.

If the argument z of a confluent hypergeometric function 1F1(a; b, z) is real and
approaches +∞, then we have the following asymptotic behavior (see, for example, [121,
equation (4.1.7)]):

1F1(a; b; z) = �(a)

�(b)
ezza−b[1 + O(1/z)], z → +∞. (4.13)

This asymptotic estimate shows that the integral∫ ∞

0
e−zzα

[
G(α)

ρ (z)
]2

dz =
[

2ρ �(ρ + α + 1)

�(α + 1)

]2 ∫ ∞

0
e−zzα[1F0(−ρ;α + 1; z/2)]2 dz (4.14)

converges if α > −1 and α + 2ρ > −1 hold. At the lower integration limit z = 0, the
integrand behaves like zα , which requires α > −1, and at the upper integration limit z = ∞,
the integrand behaves like z−α−2ρ−2, which requires α + 2ρ > −1. Thus, G(α)

ρ (z) belongs for
α > −1 and α + 2ρ > −1 to the Hilbert space L2

zα e−z ([0,∞)) defined by (2.7).
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It is possible to check the correctness of the power series representation (4.12) for G(α)
ρ (z)

by expanding it in terms of generalized Laguerre polynomials. According to (1.1b), we then
have to compute the following inner product:

λ(α)
n = 2ρ n!

�(α + n + 1)

�(ρ + α + 1)

�(α + 1)

∫ ∞

0
e−zzαL(α)

n (z)1F1(−ρ;α + 1; z/2) dz. (4.15)

Since the confluent hypergeometric function 1F1 in (4.15) is analytic in every neighborhood
of the origin, integration and summation can be interchanged. We now use [52, equation
(7.414.11), p 850]∫ ∞

0
e−t t γ−1L(μ)

n (t) dt = �(γ )�(1 + μ − γ + n)

n!�(1 + μ − γ )
, Re(γ ) > 0, (4.16)

to obtain∫ ∞

0
e−zzαL(α)

n (z)1F1(−ρ;α + 1; z/2) dz = �(α + 1)

n!

∞∑
m=0

(−ρ)m(−m)n

m!
2−m. (4.17)

The fact that the Pochhammer symbol (−m)n with m, n ∈ N0 satisfies (−m)n = 0 for
m = 0, 1, . . . , n − 1 suggest the substitution m → n + ν, yielding∫ ∞

0
e−zzαL(α)

n (z)1F1(−ρ;α + 1; z/2) dz = (−1)n
�(α + 1)(−ρ)n

2nn!
1F0(−ρ + n; 1/2). (4.18)

With the help of (3.8) we obtain

1F0(−ρ + n; 1/2) = (1/2)ρ−n = 2n−ρ. (4.19)

Combination of (4.18) and (4.19) then yields∫ ∞

0
e−zzαL(α)

n (z)1F1(−ρ;α + 1; z/2) dz = (−1)n

2ρ

�(α + 1)(−ρ)n

n!
. (4.20)

We also obtain this result if we combine (4.8) and (4.15).
As a more complicated example, let us now consider the following Laguerre series:

2H
(α)

1 (a, b; c; z) =
∞∑

n=0

(−1)n
(a)n(b)n

(c)n(α + 1)n
L(α)

n (z). (4.21)

Concerning the real parameters a, b and c, we assume for the moment only that this series
exists, which requires −c /∈ N0, that it does not terminate, which requires −a,−b /∈ N0, and
that it converges with respect to the norm (2.6) of the Hilbert space L2

zα e−z ([0,∞)). It follows
from (2.16) that this is the case if c − a − b + (α + 1)/2 > 0.

For an investigation of the analyticity of 2H
(α)

1 (a, b; c; z) at the origin, let us define

λ(α)
n = (−1)n

(a)n(b)n

(c)n(α + 1)n
. (4.22)

By proceeding as in the case of the Laguerre series (4.7) for G(α)
ρ (z) we obtain after a short

calculation,

2H
(α)

1 (a, b; c; z) =
∞∑

ν=0

2F1(a + ν, b + ν; c + ν;−1)
(a)ν(b)ν

(c)νν!

zν

(α + 1)ν
. (4.23)

It follows from (2.16) that �(a + ν + n)�(b + ν + n)/[�(c + ν + n)n!] ∼ na+b+ν−c−1 as n → ∞.
Consequently, the Gaussian hypergeometric series 2F1(a + ν, b + ν; c + ν; z) with z = −1

13
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diverges for all sufficiently large ν ∈ N0. Nevertheless, it is possible to associate a finite
value to the hypergeometric function corresponding to this divergent series with the help of
the following two linear transformations [104, p 47]:

2F1(a, b; c; z) = (1 − z)−a
2F1(a, c − b; c; z/(z − 1)) (4.24)

= (1 − z)−b
2F1(c − a, b; c; z/(z − 1)). (4.25)

The transformation z → z′ = z/(z−1) maps z = −1, which is located on the boundary of the
circle of convergence, to z′ = 1/2, which is located in the interior of the circle of convergence.
Thus, the in general divergent hypergeometric series in (4.23) can be replaced by a convergent
hypergeometric series according to

2F1(a + ν, b + ν; c + ν;−1) = 2−a−ν
2F1(a + ν, c − b; c + ν; 1/2) (4.26)

= 2−b−ν
2F1(c − a, b + ν; c + ν; 1/2). (4.27)

Inserting (4.26) and (4.27) into (4.23) yields two equivalent power series expansions for the
function defined by the Laguerre series (4.21), which seem to be new,

2H
(α)

1 (a, b; c; z) = 2−a

∞∑
ν=0

2F1
(
a + ν, c − b; c + ν; 1/2

) (a)ν(b)ν

(c)νν!

(z/2)ν

(α + 1)ν
(4.28)

= 2−b

∞∑
ν=0

2F1
(
c − a, b + ν; c + ν; 1/2

) (a)ν(b)ν

(c)νν!

(z/2)ν

(α + 1)ν
. (4.29)

A detailed analysis of the domain of analyticity of 2H
(α)

1 (a, b; c; z) requires asymptotic
estimates of the behavior of the Gaussian hypergeometric series in (4.23), (4.28) and (4.29)
as ν → ∞. If we use the linear transformation [104, p 47]

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z), (4.30)

which certainly holds for |z| < 1, we obtain

2F1(a + ν, b + ν; c + ν; z) = (1 − z)c−a−b−ν
2F1(c − a, c − b; c + ν; z). (4.31)

The asymptotic estimate (2.16) yields �(c−a +n)�(c−b+n)/[�(c+ν +n)n!] ∼ nc−a−b−ν−1

as n → ∞. Accordingly, the hypergeometric series on the right-hand side of (4.31) converges
at least for sufficiently large values of ν also for z = −1 and provides an analytic continuation.
Moreover, (4.31) is a convenient starting point for the construction of an asymptotic expansion
of the divergent hypergeometric series in (4.23) as ν → ∞ (compare also [129, equation (15)]),

2F1(a + ν, b + ν; c + ν;−1) = 2c−a−b−ν

∞∑
n=0

(−1)n
(c − a)n(c − b)n

(c + ν)nn!
(4.32)

= 2c−a−b−ν

[
1 − (c − a)(c − b)

(c + ν)
+ O(ν−2)

]
, ν → ∞. (4.33)

This asymptotic estimate shows that 2H
(α)

1 (a, b; c; z) is for −c /∈ N0 analytic in every
neighborhood of the origin.
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5. Exponentially and factorially decaying series coefficients

It is immediately obvious that the inner μ series in (3.14) converges if the series coefficients
λ(α)

n decay for sufficiently large indices n exponentially, satisfying for instance

λ(α)
n ∼ nθRn, θ ∈ R, |R| < 1, n → ∞. (5.1)

As the probably most simple example of a Laguerre series of the type of (1.1) with
exponentially decaying coefficients, let us consider the following expansion:

E (α)(t; z) =
∞∑

n=0

tnL(α)
n (z). (5.2)

It is immediately obvious that the Laguerre series (5.2) converges in the mean with respect to
the norm (2.6) of the Hilbert space L2

zα e−z ([0,∞)) for |t | < 1, and that it diverges for |t | � 1.
Equivalently, we can say that the series (2.13) for the norm ‖E (α)(t; z)‖zα e−z,2 produces a finite
result for |t | < 1 and that it diverges for |t | � 1.

Ignoring for the moment all questions of convergence, let us now assume that t is an
unspecified complex number and insert λ(α)

n = tn into (3.14). Then, we obtain

E (α)(t; z) =
∞∑

ν=0

(−tz)ν

ν!

∞∑
μ=0

(α + ν + 1)μ

μ!
tμ (5.3)

=
∞∑

ν=0

(−tz)ν

ν!
1F0(α + ν + 1; t). (5.4)

A nonterminating hypergeometric series 1F0(a; z) converges only in the interior of the unit
circle. Since we always assume α > −1, the hypergeometric series 1F0

(
α + ν + 1; t

)
in (5.4)

does not terminate and we have to require |t | < 1. However, 1F0
(
α + ν + 1; t

)
can according

to (3.8) be expressed in closed form

1F0(α + ν + 1; t) = (1 − t)−α−ν−1, t ∈ C\{1}, (5.5)

which yields an analytic continuation for t 	= 1. Inserting (5.5) into (5.4) yields

E (α)(t; z) = (1 − t)−α−1
∞∑

ν=0

(−tz/[1 − t])ν

ν!
(5.6)

= (1 − t)−α−1 exp(−tz/[1 − t]). (5.7)

Accordingly, the Laguerre series (5.2) for E (α)(t; z) is nothing but the well-known generating
function [104, p 242]

∞∑
n=0

L(α)
n (z)tn = (1 − t)−α−1 exp(zt/[t − 1]), |t | < 1, (5.8)

in disguise.
As a generalization of the alternating Laguerre series (4.7), let us consider the following

expansion with exponentially decaying coefficients:

G (α)
ρ (s; z) = �(ρ + α + 1)

�(α + 1)

∞∑
n=0

(−s)n
(−ρ)n

(α + 1)n
L(α)

n (z), ρ ∈ R\N0, α + 2ρ > −1.

(5.9)

Obviously, this Laguerre series converges in the mean for |s| < 1.

15



J. Phys. A: Math. Theor. 41 (2008) 425207 E J Weniger

For an investigation of the analyticity of G (α)
ρ (s; z) at the origin, let us define

λ(α)
n = �(ρ + α + 1)

�(−ρ)

�(−ρ + n)

�(α + n + 1)
(−s)n. (5.10)

Inserting this into the modified rearranged Laguerre expansion (4.2) yields

G (α)
ρ (s; z) = �(ρ + α + 1)

�(α + 1)

∞∑
ν=0

(−ρ)ν

(α + 1)ν

(sz)ν

ν!

∞∑
μ=0

(−ρ + ν)μ

μ!
(−s)μ (5.11)

= �(ρ + α + 1)

�(α + 1)

∞∑
ν=0

(−ρ)ν

(α + 1)ν

(sz)ν

ν!
1F0(−ρ + ν;−s). (5.12)

With the help of (3.8), we obtain

1F0(−ρ + ν;−s) = (1 + s)ρ−ν, s 	= −1. (5.13)

Inserting (5.13) into (5.12) yields

G (α)
ρ (s; z) = (1 + s)ρ

�(ρ + α + 1)

�(α + 1)
1F1(−ρ;α + 1; sz/[1 + s]). (5.14)

The argument of the confluent hypergeometric series 1F1 becomes infinite for s = −1. If we
assume α > −1, then the right-hand side of (5.14) is mathematically meaningful for all z ∈ C

and for all s ∈ C\{−1}. However, this is not true for the corresponding Laguerre series (5.9).
The convergence of the series (2.13) for the norm

∥∥G (α)
ρ (s; z)

∥∥
zα e−z,2 is only guaranteed for

|s| < 1.
It follows from (5.14) that G (α)

ρ (s; z) is essentially a confluent hypergeometric series 1F1.
Accordingly, the Laguerre series (5.9) for G (α)

ρ (s; z) can be rewritten as follows:

1F1(−ρ;α + 1; sz/[1 + s]) = (1 + s)−ρ

∞∑
n=0

(−s)n
(−ρ)n

(α + 1)n
L(α)

n (z). (5.15)

If we make in (5.15) the substitutions ρ → −c and s → −t , we see that the function G (α)
ρ (s; z)

is nothing but the well-known generating function [112, equation (3), p 202])

∞∑
n=0

(c)nL
(α)
n (x)

(α + 1)n
tn = (1 − t)−c

1F1(c;α + 1;−xt/[1 − t]) (5.16)

in disguise.
If we set s = −1 in the Laguerre series (5.9) for G (α)

ρ (s; z), we obtain the Laguerre series
(3.3) for zρ . To analyze the behavior of G (α)

ρ (s; z) as s ↓ −1, we write s = −1 + δ with δ � 0
and consider in (5.14) the limit δ↓0. We obtain

G (α)
ρ (δ − 1; z) = δρ �(ρ + α + 1)

�(α + 1)
1F1(−ρ;α + 1; (δ − 1)z/δ). (5.17)

Next, we use the following asymptotic estimate [121, equation (4.1.8)]:

1F1(a; b; z) = �(b)

�(b − a)
(−z)−a[1 + O(1/z)], z → −∞. (5.18)
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If we insert (5.18) into (5.17), we obtain in the limit of vanishing δ � 0,

G (α)
ρ (−1; z) = lim

δ↓0
G (α)

ρ (δ − 1; z)

= lim
δ↓0

[(1 − δ)z]ρ
{

1 + O

(
δ

(δ − 1)z

)}
= zρ. (5.19)

Thus, G (α)
ρ (s; z) possesses the one-sided limit zρ as s ↓ −1, as it should according to the

Laguerre series (3.3) and (5.9).
The transformation formula (3.14) can only be used if the function represented by the

Laguerre series is analytic at the origin, because otherwise the inner μ series diverge. Thus, it
is not possible to obtain in this way an explicit expression for a nonanalytic function defined
by a Laguerre series of the type of (1.1) with monotone and algebraically decaying series
coefficients λ(α)

n .
However, the fact that the in general nonanalytic power function zρ can according to

(5.19) be obtained by considering the one-sided limit s↓−1 in the analytic function G (α)
ρ (s; z)

indicates that the situation is not as hopeless as it may look at first sight.
Let us therefore assume for the moment that the coefficients λ(α)

n of a Laguerre series are
monotone and decay algebraically as n → ∞. This implies that the inner μ series in (3.14)
produce infinities. However, we could try to apply the transformation formula (3.14) to a
modified Laguerre series with coefficients tnλ(α)

n . Since these coefficients decay exponentially
for |t | < 1, this modified Laguerre series represents an analytic function. If we succeed in
constructing an explicit expression for this analytic function, then we can try to perform the
one-sided limit t ↑ 1 in this expression. If this can be done, we obtain an explicit expression
for a nonanalytic function. Obviously, this idea deserves to be investigated further.

Although the explicit expression (5.14) for G (α)
ρ (s; z) is mathematically well defined for

all s ∈ C\{−1} and possesses a one-sided limit for s ↓ −1, its Laguerre series (5.9) requires
more restrictive conditions. In general, generating functions of the kind of (5.9) converge
only for |s| < 1, i.e., in the interior of the unit circle, and possibly also for some points on the
boundary of the unit circle.

If we make in (5.9) or in (5.15) the substitution s → 1, we obtain the series expansions
(4.7) and (4.12), respectively, for G(α)

ρ (x). Thus, in this case it is possible to extend the
Laguerre series (5.9), which converges exponentially in the mean for |s| < 1, to the boundary
of its circle of convergence, yielding a convergent Laguerre series with algebraically decaying
coefficients that ultimately have strictly alternating signs.

It is important to note that this approach does not always work. If we make in the Laguerre
series (5.2), which because of (5.7) is nothing but the generating function (5.8), the substitution
t → −1, we formally obtain

ez/2 = 2α+1
∞∑

n=0

(−1)nL(α)
n (z). (5.20)

However, ez/2 does not belong to the Hilbert space L2
zα e−z ([0,∞)) defined by (2.7), and it

follows from (2.18) that the series (2.12) for the norm ‖ez/2‖zα e−z,2 does not converge.
It is also not possible to assume |s| > 1 in the Laguerre series (5.9) for G (α)

ρ (s; z), because
then the series (2.12) for the norm

∥∥G (α)
ρ (s; z)

∥∥
zα e−z,2 diverges. In contrast, the explicit

expression (5.14) for G (α)
ρ (s; z) remains meaningful for |s| > 1.

If the series coefficients of a power series decay factorially, we can expect that the function
represented by this power series is analytic in the whole complex plane C. The most obvious
examples are the exponential exp(z), or—slightly more general—the confluent hypergeometric
series 1F1(a; b; z). In contrast, power series, whose coefficients decay algebraically, converge
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only in compact subset of the complex plane. It should be of interest to study how factorially
decaying series coefficients λ(α)

n influence the analyticity properties of functions represented
by a Laguerre series of the type of (1.1).

As an example, let us consider the following Laguerre series:

F (α)(s; z) =
∞∑

n=0

sn

(α + 1)n
L(α)

n (z). (5.21)

Thus, we choose λ(α)
n = sn/(α + 1)n in (1.1). Inserting this into the modified rearranged

Laguerre expansion (4.2) yields

F (α)(s; z) =
∞∑

ν=0

(−sz)ν

(α + 1)νν!

∞∑
μ=0

sμ

μ!
(5.22)

= es

∞∑
ν=0

(−sz)ν

(α + 1)νν!
. (5.23)

The infinite series in (5.22) can be expressed as a generalized hypergeometric series 0F1. We
then obtain

F (α)(s; z) = es
0F1(α + 1;−sz). (5.24)

However, this is nothing but a known generating function [104, p 242].
The generalized hypergeometric series 0F1(α + 1;−sz) in (5.24) obviously converges for

all s, z ∈ C as long as α + 1 is not a negative integer. Since we always assume α > −1,
we thus can conclude that F (α)(s; z) is an analytic function in the sense of complex analysis
in both s and z. Moreover, the series (2.13) for the norm ‖F (α)(s; z)‖zα e−z,2 converges for
arbitrary s ∈ C.

6. Computational approaches

The examples considered in sections 4 and 5 show that it is indeed possible to transform a
Laguerre series of the type of (1.1) with the help of (3.14) to a power series about z = 0
of the type of (1.3). The essential requirement is that the inner μ series in (3.14) have to
converge. This is the case if the coefficients λ(α)

n of the Laguerre series decay sufficiently
rapidly, or—if the coefficients λ(α)

n only decay algebraically in magnitude—ultimately have
strictly alternating signs.

In section 5, the transformation of Laguerre series with exponentially and factorially
decaying series coefficients was discussed. Apart from finite Laguerre expansions, this is
pretty much the best scenario which can occur in this context. The convergence of the inner μ

series is guaranteed, and often such a μ series converges rapidly, making the resulting power
series expansion computationally useful even if it is not possible to find a convenient closed
form expression for the inner μ series.

As discussed in section 4, the most challenging and therefore also most interesting
problems occur if the coefficients λ(α)

n decay algebraically as n → ∞. If algebraically decaying
coefficients λ(α)

n ultimately have the same sign, the inner μ series in (3.14) diverge, and it is
also not possible to sum these series to something finite. Accordingly, the transformation
formula (3.14) leads to a power series expansion having infinitely many series coefficients that
are infinite in magnitude. This simply means that a power series in z does not exist because
the function under consideration is not analytic at the origin.
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The inner μ series in (3.14) also do not converge if the coefficients λ(α)
n decay algebraically

and ultimately have strictly alternating signs. But in this case, suitable summation techniques
are capable of associating something finite to the divergent inner μ series.

In all examples considered in section 4, it was possible to sum the divergent inner μ series
with ultimately strictly alternating signs by means of explicit analytic continuation formulae
for hypergeometric series 1F0 and 2F1, respectively. For example, the Laguerre series (4.7)
for G(α)

ρ (z) leads according to (4.10) to inner μ series that can be expressed as binomial
series 1F0(−ρ + ν;−1) which diverge for fixed ρ ∈ R\N0 at least for sufficiently large values
of ν ∈ N0. Nevertheless, the summation of such a divergent series is trivial because every
hypergeometric series 1F0(a; z) with z 	= 1 possesses according to (3.8) a very simple closed
form expression which accomplishes the necessary analytic continuation.

Similarly, the Laguerre series (4.21) for 2H
(α)

1 (a, b; c; z) leads according to (4.23) to an
inner μ series that can be expressed as a hypergeometric series 2F1(a + ν, b + ν; c + ν;−1)

that also diverges for sufficiently large ν ∈ N0. But again, it is almost trivially simple to
find explicit analytic continuation formulae that replace this divergent series by convergent
expansions. The linear transformations (4.24) and (4.25) do the job.

Unfortunately, the situation is not nearly as nice if the series coefficients λ(α)
n have a

more complicated structure. Let us for example consider the following Laguerre series with
coefficients λ(α)

n that are ratios of p+1 numerator and p+1 denominator Pochhammer symbols:

p+1H
(α)

p (a1, . . . , ap+1; b1, . . . , bp; z) =
∞∑

n=0

(−1)n
(a1)n · · · (ap+1)n

(b1)n · · · (bp)n

L(α)
n (z)

(α + 1)n
, p ∈ N0.

(6.1)

Obviously, this Laguerre series generalizes the Laguerre series (4.21) for 2H
(α)

1 (a, b; c; z).
It is easy to show that the application of the transformation formula (3.14) to the Laguerre

series (6.1) leads to inner μ series that can be expressed as generalized hypergeometric series

p+1Fp

(
a1 + ν, . . . , ap+1 + ν

b1 + ν, . . . , bp + ν
; z

)
=

∞∑
n=0

(a1 + ν)n · · · (ap+1 + ν)n

(b1 + ν)n · · · (bp + ν)n

zn

n!
(6.2)

with argument z = −1. Just like the Gaussian hypergeometric series 2F1, a nonterminating
generalized hypergeometric series p+1Fp converges only in the interior of the unit circle.
Moreover, (2.16) implies

�(a1 + ν + n)�(ap+1 + ν + n)

�(b1 + ν + n)�(bp + ν + n)n!
∼ na1+···+ap+1+ν−b1+···−bp , n → ∞. (6.3)

This asymptotic estimate shows that the generalized hypergeometric series (6.2) with argument
z = −1 diverge for sufficiently large values of ν and have to be summed. Unfortunately, the
theory of the generalized hypergeometric series p+1Fp with p � 2 is not nearly as highly
developed as the theory of the Gaussian hypergeometric series 2F1. Many transformation
and/or analytic continuation formulae for a generalized hypergeometric series p+1Fp with
p � 2 are either not known or at least much more complicated than the corresponding
expressions for a Gaussian hypergeometric series 2F1 (compare also [27]). We can safely
assume that our chances of finding convenient explicit analytic continuation formulae, that
can accomplish the summation of the divergent generalized hypergeometric series (6.2), are
rapidly approaching zero with increasing p.

Thus, the rearrangement of Laguerre series via (3.14) can only produce closed form
expressions if algebraically decaying and ultimately strictly alternating series coefficients λ(α)

n

have an exceptionally simple structure, as for example those in the Laguerre series (4.7) and
(4.21). In the case of more complicated coefficients λ(α)

n , the necessary summations of the
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divergent inner μ series will be too difficult to produce closed form expressions of manageable
complexity.

These and related considerations may tempt a skeptical reader to argue with some
justification that all examples considered in section 4 are actually fairly simple. Therefore, it
is by no means obvious whether the approach of this paper is capable of producing anything
new beyond a rederivation of known and comparatively simple formulae.

While the first conclusion is certainly correct, the second is in my opinion overly
pessimistic. The reason is that summation via analytic continuation formulae is not the
only possibility: we can also try to use numerical summation techniques. Of course, knowing
only numerical approximations to the leading coefficients of a power series is not nearly as
nice as knowing explicit and possibly even simple expressions for the series coefficients, but it
is certainly better than nothing. In practical applications, this limited information may suffice.

The use of numerical summation techniques is by no means a new idea. Already in
1882, Hölder [82] proposed—inspired by a paper by Frobenius [49]—to determine the value
of a power series on the boundary of its circle of convergence with the help of numerical
summation processes based on weighted arithmetic means.

As discussed in appendix B, the numerical processes proposed by Hölder [82] and others
subsequently evolved to a sophisticated mathematical theory of so-called regular matrix
transformations that have many advantageous theoretical features and that can be used for
the summation of divergent alternating series possessing similar divergence properties as the
generalized hypergeometric series (6.2).

Unfortunately, regular matrix transformations are in general at best moderately powerful.
Therefore, I prefer to use instead nonlinear sequence transformations, whose theoretical
properties are not yet completely understood, but which are according to experience often
much better suited to achieve highly accurate summation results.

It may be interesting to note that summation techniques such as conformal mappings,
re-expansions and Padé approximants were discussed in a paper by Skorokhodov [118] on the
analytic continuation of a divergent generalized hypergeometric series p+1Fp with argument
|z| � 1. Skorokhodov completely ignored the theoretically much simpler, but also less
powerful regular matrix transformations. Nevertheless, I do not think that the summation
techniques considered by Skorokhodov give best results in the case of the divergent, but
summable inner μ series occurring in this paper. In my opinion, (much) better results can
be obtained with the help of those nonlinear sequence transformations that are reviewed in
appendix B.

In this paper, I apply as numerical summation techniques Wynn’s epsilon algorithm (B.4),
and the two Levin-type transformations (B.14) and (B.15). Wynn’s epsilon algorithm produces
Padé approximants according to (B.5) if the input data are the partial sums fn(z) = ∑n

k=0 γkz
k

of a power series. The two Levin-type transformations (B.14) and (B.15) are based on the
remainder estimate (B.13) which corresponds to the first term neglected in the partial sum.
Both are known to be highly effective in the case of both convergent and divergent alternating
series.

The discussion in section 4 should provide convincing evidence that for z = −1 and
in particular for large values of ν ∈ N0 it is not a particularly good idea to use the
hypergeometric series 2F1(a + ν, b + ν; c + ν; z) for the evaluation of the hypergeometric
function it represents. With the help of analytic continuation formulae like (4.24) and
(4.25) or also (4.30), computationally much more convenient hypergeometric series can
be derived. However, these simplifications are only possible in the case of a Gaussian
hypergeometric series 2F1, but not necessarily in the case of more complicated generalized
hypergeometric series p+1Fp, let alone in the case of divergent, but summable inner μ series
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Table 1. Application of Wynn’s epsilon algorithm and the Levin-type transformations d
(n)
k (β, sn)

and δ
(n)
k (β, sn) with β = 1 to the partial sums of the slowly convergent hypergeometric series

2F1(a + ν, b + ν; c + ν; −1) with a = 3/2, b = 7/3, c = 21/4 and ν = 0.

sn ε
(n−2�n/2)
2�n/2 d

(0)
n (1, s0) δ

(0)
n (1, s0)

n equation (6.4) equation (B.4) equation (B.14) equation (B.15)

0 1.000 000 00 1.000 000 000 000 000 1.000 000 000 000 000 1.000 000 000 000 000
1 0.333 333 33 0.333 333 333 333 333 0.600 000 000 000 000 0.600 000 000 000 000
2 0.777 777 78 0.600 000 000 000 000 0.596 079 232 182 969 0.596 079 232 182 969
3 0.467 858 66 0.595 184 349 134 688 0.597 361 776 678 518 0.597 283 629 053 888
4 0.693 254 38 0.597 114 931 459 132 0.597 128 156 362 257 0.597 151 427 941 970
5 0.523 496 89 0.597 142 098 567 676 0.597 159 499 152 400 0.597 156 391 214 500
6 0.655 070 45 0.598 028 964 909 470 0.597 156 082 629 105 0.597 156 376 752 544
7 0.550 646 99 0.597 156 986 187 236 0.597 156 397 164 508 0.597 156 374 043 337
8 0.635 180 26 0.597 156 454 880 736 0.597 156 372 412 882 0.597 156 373 980 610
9 0.565 592 42 0.597 156 266 466 529 0.597 156 374 069 016 0.597 156 373 980 877

10 0.623 704 37 0.597 156 373 786 525 0.597 156 373 977 124 0.597 156 373 980 968
11 0.574 570 47 0.597 156 373 530 068 0.597 156 373 981 079 0.597 156 373 980 973

Exact 0.597 156 373 980 973 0.597 156 373 980 973 0.597 156 373 980 973

that result from purely numerical Laguerre series coefficients λ(α)
n . Thus, the hypergeometric

series 2F1(a + ν, b + ν; c + ν;−1) serves as a model problem for other divergent alternating
series whose terms also increase in magnitude like a fixed power of the index. It should be
interesting to see how much can be accomplished by employing powerful nonlinear sequence
transformations.

In tables 1 and 2, the nonlinear transformations mentioned above are applied to the partial
sums

sn = sn(a, b, c, ν) =
n∑

k=0

(−1)k
(a + ν)k(b + ν)k

(c + ν)kk!
(6.4)

of the Gaussian hypergeometric series 2F1(a + ν, b + ν; c + ν;−1) with a = 3/2, b = 7/3 and
c = 21/4. In table 1 we have ν = 0, and in table 2 we have ν = 10. All transformation results
of this paper were obtained using the floating point arithmetics of Maple 11, and the ‘exact’
result in tables 1 and 2 was produced by the Maple procedure hypergeom which computes
generalized hypergeometric series.

The entries in the third column of table 1 are chosen according (B.8), and the entries in
columns 4 and 5 according to (B.16). Since Wynn’s epsilon algorithm produces according to
(B.5) Padé approximants if the input data are the partial sums of a power series, the entries
in the third column can be identified with the staircase sequence [�(n + 1)/2/�n/2] of Padé
approximants to the hypergeometric series 2F1(a + ν, b + ν; c + ν; z) with z = −1. Here, �x
stands for the integral part of x, which is the largest integer ν satisfying ν � x.

The asymptotic estimate (2.16) shows that the terms (−1)n(a)n(b)n/[(c)nn!] of the
hypergeometric series in table 1 decay in magnitude like n−29/12 as n → ∞. Therefore,
this hypergeometric series converges, albeit quite slowly. This assessment is confirmed by
the data in the second column of table 1. The transformation results in table 1 indicate that
all three transformations are able to accelerate the convergence of the hypergeometric series
2F1 effectively. The least effective, but still very powerful accelerator is Wynn’s epsilon
algorithm, and the most effective transformation is the Levin-type delta transformation which
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Table 2. Summation of the hypergeometric series 2F1(a + ν, b + ν; c + ν;−1) with a = 3/2, b =
7/3, c = 21/4 and ν = 10 with the help of Wynn’s epsilon algorithm and the Levin-type
transformation δ

(n)
k (β, sn) with β = 1.

sn ε
(n−2�n/2)
2�n/2 δ

(0)
n (1, s0)

n equation (6.4) equation (B.4) equation (B.15)

0 0.100 00 × 101 0.100 000 000 000 000 × 10+1 0.100 000 000 000 000 × 10+1

1 −0.830 05 × 101 −0.830 054 644 808 743 × 10+1 −0.517 662 391 110 501 × 10+0

2 0.393 95 × 102 −0.517 662 391 110 501 × 10+0 0.355 800 262 535 272 × 10+0

3 −0.138 94 × 103 0.176 355 932 965 950 × 10+1 −0.979 095 090 620 413 × 10−1

4 0.404 21 × 103 0.150 567 485 119 558 × 10+0 0.156 275 192 732 603 × 10−1

5 −0.102 45 × 104 −0.292 708 508 243 714 × 10+0 0.539 203 120 343 906 × 10−3

6 0.233 85 × 104 −0.235 266 825 737 199 × 10−1 0.137 225 149 988 457 × 10−2

7 −0.491 49 × 104 0.351 057 409 892 771 × 10−1 0.145 137 993 614 918 × 10−2

8 0.965 99 × 104 0.394 766 824 723 114 × 10−2 0.142 550 654 190 640 × 10−2

9 −0.179 57 × 105 −0.113 107 334 634 727 × 10−2 0.142 932 832 720 914 × 10−2

10 0.318 49 × 105 0.127 361 316 374 322 × 10−2 0.142 892 054 773 978 × 10−2

11 −0.542 55 × 105 0.155 543 251 021 275 × 10−2 0.142 895 407 283 313 × 10−2

12 0.892 51 × 105 0.143 471 035 609 870 × 10−2 0.142 895 196 573 040 × 10−2

13 −0.142 40 × 106 0.142 504 106 397 527 × 10−2 0.142 895 206 303 027 × 10−2

14 0.221 13 × 106 0.142 883 205 557 579 × 10−2 0.142 895 205 998 921 × 10−2

15 −0.335 24 × 106 0.142 902 170 361 815 × 10−2 0.142 895 206 004 165 × 10−2

16 0.497 40 × 106 0.142 895 322 013 589 × 10−2 0.142 895 206 004 153 × 10−2

17 −0.723 81 × 106 0.142 895 148 436 317 × 10−2 0.142 895 206 004 152 × 10−2

Exact 0.142 895 206 004 152 × 10−2 0.142 895 206 004 152 × 10−2

is—as documented by numerous references mentioned in appendix B—known to be highly
effective in the case of both convergent and divergent alternating series.

In table 2, only Wynn’s epsilon algorithm and the delta transformation are displayed.
The data in the second column show that the partial sums (6.4) with ν = 10 diverge rapidly.
Nevertheless, it is possible to obtain highly accurate summation results. As in table 1, the
delta transformation was clearly more effective than Wynn’s epsilon algorithm.

It is in my opinion remarkable that Levin’s transformation (B.14), whose action on the
partial sums (6.4) is not displayed in table 2, turned out to be only roughly as effective as
Wynn’s epsilon algorithm. Under the same conditions as in table 2, I obtained the following
summation results:

d
(0)
16 (1, s0) = 0.142 894 441 246 992 × 10−2, (6.5)

d
(0)
17 (1, s0) = 0.142 895 355 463 039 × 10−2. (6.6)

In view of the in general very good reputation of Levin’s sequence transformation, this
comparatively weak performance is somewhat puzzling.

In the case of more complicated generalized hypergeometric series p+1Fp, the same
general pattern was observed. If the same nonlinear sequence transformations as in tables 1
and 2 are applied to the partial sums

sn = sn(a, b, c, d, e, ν) =
n∑

k=0

(−1)k
(a + ν)k(b + ν)k(c + ν)k

(d + ν)k(e + ν)kk!
(6.7)
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of the generalized hypergeometric series 3F2(a + ν, b + ν, c + ν; d + ν, e + ν;−1) with
a = 3/2, b = 7/3, c = 11/5, d = 22/7 and e = 32/11, we obtain for the convergent
hypergeometric series with ν = 0,

ε
(0)
12 = 0.536 266 961 325 332, (6.8)

d
(0)
12 (1, s0) = 0.536 266 961 240 988, (6.9)

δ
(0)
12 (1, s0) = 0.536 266 961 240 986, (6.10)

hypergeom = 0.536 266 961 240 986, (6.11)

and for the divergent hypergeometric series with ν = 10,

ε
(1)
16 = 0.816 454 762 672 306 × 10−3, (6.12)

d
(0)
17 (1, s0) = 0.816 459 448 502 108 × 10−3, (6.13)

δ
(0)
17 (1, s0) = 0.816 458 731 770 118 × 10−3, (6.14)

hypergeom = 0.816 458 731 770 118 × 10−3. (6.15)

In the case of the partial sums

sn = sn(a, b, c, d, e, f, g, ν) =
n∑

k=0

(−1)k
(a + ν)k(b + ν)k(c + ν)k(d + ν)k

(e + ν)k(f + ν)k(g + ν)kk!
(6.16)

of the generalized hypergeometric series 4F3(a + ν, b + ν, c + ν, d + ν; e + ν, f + ν, g + ν;−1)

with a = 3/2, b = 7/3, c = 11/5, d = 16/17, e = 18/19, f = 22/7 and g = 32/11, we
obtain for the convergent hypergeometric series with ν = 0,

ε
(0)
12 = 0.538 509 188 429 164, (6.17)

d
(0)
12 (1, s0) = 0.538 509 188 330 837, (6.18)

δ
(0)
12 (1, s0) = 0.538 509 188 330 835, (6.19)

hypergeom = 0.538 509 188 330 835, (6.20)

and for the divergent hypergeometric series with ν = 10,

ε
(1)
16 = 0.819 691 553 980 977 × 10−3, (6.21)

d
(0)
17 (1, s0) = 0.819 696 193 819 277 × 10−3, (6.22)

δ
(0)
17 (1, s0) = 0.819 695 479 036 364 × 10−3, (6.23)

hypergeom = 0.819 695 479 036 364 × 10−3. (6.24)

It was emphasized in section 5 that the inner μ series in (3.14) converge if the coefficients
λ(α)

n of a Laguerre series decay exponentially as n → ∞. Accordingly, summation techniques
are not needed in this case. Nevertheless, nonlinear sequence transformations can be extremely
useful even in the case of exponentially decaying Laguerre series coefficients. Let us, for
example, assume that the coefficients λ(α)

n of a Laguerre series satisfy

λ(α)
n = tn�(n)

n (6.25)
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and that it is not possible to derive closed form expressions for the inner μ series in (3.14).
Thus, the inner μ series have to be evaluated numerically.

Let us now also assume that the coefficients �(n)
n increase like a fixed power of n as

n → ∞. In spite of this unfavorable behavior, the inner μ series converge as long as |t | < 1.
However, convergence can become prohibitively slow if |t | is only slightly smaller than one.
The convergence problems are particularly severe if the terms in inner μ series ultimately
have the same sign because then the μ series do not converge for t = 1 and are also not
summable. But again, nonlinear sequence transformations can be extremely useful to speed
up the convergence of such a monotone series with (very) slowly decaying terms (see, for
example, [87] or [29, section 2.2.6] and references therein).

As documented by the recent books by Cuyt et al [38] and by Gil et al [50], or by a review
by Temme [130], there is currently a lot of work being done on the efficient and reliable
evaluation of special functions. As I had shown in several papers [86, 87, 139, 140, 142, 143,
146, 150, 151, 158, 165], nonlinear sequence transformations can be extremely useful in this
respect.

7. Guseinov’s rearranged one-range addition theorems

The analyticity of Laguerre series is a problem of classical analysis, but I became interested
in this mathematical topic because of some open questions in molecular electronic structure
theory. During the work for my forthcoming review on addition theorems [157], I came across
some papers by Guseinov [55, 56, 58] who had constructed one-range addition theorems for
Slater-type functions [119, 120]. In unnormalized form, Slater-type functions, which play a
major role as basis functions in atomic and molecular electronic structure calculations, are
defined as follows:

χM
N,L(β, r) = (βr)N−L−1e−βrY M

L (βr). (7.1)

Here, r ∈ R
3,Y M

L (βr) = (βr)LYM
L (θ, φ) is a regular solid harmonic and YM

L (θ, φ) is a
(surface) spherical harmonic, β > 0 is a scaling parameter, N ∈ R\N is a kind of generalized
principal quantum number which is often, but not always a positive integer � L + 1, and L
and M are the usual (orbital) angular momentum quantum numbers.

Let us assume that {ϕm
n,�(r)}n,�,m is a complete and orthonormal function set in the Hilbert

space

L2(R3) =
{
f : R

3 → C

∣∣∣∣
∫

|f (r)|2 d3r < ∞
}

(7.2)

of functions that are square integrable with respect to an integration over the whole R
3.

Since any f ∈ L2(R3) can be expanded in terms of the complete and orthonormal functions
{ϕm

n,�(r)}n,�,m, a one-range addition theorem for f (r ± r′) can be formulated as follows:

f (r ± r′) =
∑
n�m

Cm
n,�(f ;±r′)ϕm

n,�(r), (7.3a)

Cm
n,�(f ;±r′) =

∫ [
ϕm

n,�(r)
]∗

f (r ± r′) d3r. (7.3b)

The expansion (7.3), which converges in the mean with respect to the norm of the Hilbert space
L2(R3), is a one-range addition theorem since the variables r and r′ are completely separated:
the dependence on r is entirely contained in the functions ϕm

n,�(r), whereas r′ occurs only in
the expansion coefficients Cm

n,�(f ;±r′) which are overlap or convolution-type integrals.

24



J. Phys. A: Math. Theor. 41 (2008) 425207 E J Weniger

One-range addition theorems of the kind of (7.3) were constructed by Filter and Steinborn
[47, equations (5.11) and (5.12)] and later applied by Kranz and Steinborn [100] and by Trivedi
and Steinborn [134]. An alternative derivation of these addition theorems based on Fourier
transformation combined with weakly convergent expansions of the plane wave exp(±ip · r)

with p, r ∈ R
3 was presented in [138, section VII].

As discussed in [154, section 3]), it is also possible to formulate one-range addition
theorems that converge with respect to the norm of a weighted Hilbert space

L2
w(R3) =

{
f : R

3 → C

∣∣∣∣
∫

w(r)|f (r)|2 d3r < ∞
}
, (7.4)

where w(r) 	= 1 is a suitable positive weight function. If we assume that f ∈ L2
w(R3) and

that the functions
{
ψm

n,�(r)
}

n,�,m
are complete and orthonormal in L2

w(R3), then we obtain the
following one-range addition theorem [154, equation (3.6)]):

f (r ± r′) =
∑
n�m

Cm
n,�(f,w;±r′)ψm

n,�(r), (7.5a)

Cm
n,�(f,w;±r′) =

∫ [
ψm

n,�(r)
]∗

w(r)f (r ± r′) d3r. (7.5b)

A one-range addition theorem for a function f : R
3 → C is a mapping R

3 × R
3 → C.

Compared to the better known two-range addition theorems like the so-called Laplace
expansion of the Coulomb or Newton potential 1/r , which possesses a characteristic two-
range form (see, for example, [154, equation (1.2)]), one-range addition theorems have the
highly advantageous feature that they provide a unique infinite series representation of f (r±r′)
with separated variables r and r′ that is valid for the whole argument set R

3 × R
3. Further

properties of addition theorems in general and of one-range addition theorems in particular
will be discussed in my forthcoming review [157].

In his one-range addition theorems, Guseinov used as a complete and orthonormal function
set the following functions [57, equation (1)], which—if the mathematical notation for the
generalized Laguerre polynomials is used—can be expressed as follows [154, equation (4.16)]:

k�
m
n,�(γ, r) =

[
(2γ )k+3(n − � − 1)!

(n + � + k + 1)!

]1/2

e−γ rL
(2�+k+2)
n−�−1 (2γ r)Y m

� (2γ r),

n ∈ N, k = −1, 0, 1, 2, . . . , γ > 0. (7.6)

As discussed in the text following [154, equation (4.20)], Guseinov’s functions (7.6) can—
depending on the value of k = −1, 0, 1, 2, . . .—reproduce several other physically relevant
complete and orthonormal function sets.

Guseinov’s functions are orthonormal with respect to the weight function w(r) = rk

(compare also [58, equation (4)]),∫ [
k�

m
n,�(γ, r)

]∗
rk

k�
m′
n′,�′(γ, r) d3r = δnn′δ��′δmm′ . (7.7)

Accordingly, Guseinov’s functions are complete and orthonormal in the weighted Hilbert
space

L2
rk (R

3) =
{
f : R

3 → C

∣∣∣∣
∫

rk|f (r)|2d3r < ∞
}
, k = −1, 1, 2, . . . . (7.8)

For k = 0, we retrieve the Hilbert space L2(R3) of square integrable functions defined
by (7.2).
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As long as the principal quantum number N is not too negative, a Slater-type function
χM

N,L(β, r) is for a fixed value of k an element of the weighted Hilbert space L2
rk (R

3).
In this case, Guseinov’s approach [55, 56, 58], who constructed one-range addition
theorems by expanding χM

N,L(β, r ± r′) in terms of his complete and orthonormal functions{
k�

m
n,�(γ, r)

}
n,�,m

with in general different scaling parameters β 	= γ > 0, is mathematically
sound. For fixed k = −1, 0, 1, 2, . . . , Guseinov constructed expansions that converge in the
mean with respect to the norm of L2

rk (R
3).

However, Guseinov replaced in his one-range addition theorems his complete and
orthonormal functions k�

m
n,�(β, r) by nonorthogonal Slater-type functions with integral

principal quantum numbers via [154, equation (6.4)]

k�
m
n,�(β, r) = 2�

[
(2β)k+3(n + � + k + 1)!

(n − � − 1)!

]1/2 n−�−1∑
ν=0

(−n + � + 1)ν2ν

(2� + k + ν + 2)!ν!
χm

ν+�+1,�(β, r). (7.9)

This is still legitimate. However, Guseinov also rearranged the order of summations of the
resulting expansions. In this way, Guseinov formally constructed expansions of Slater-type
functions χM

N,L(β, r ± r′) with in general nonintegral principal quantum numbers N ∈ R\N

in terms of Slater-type functions χm
n,�(β, r) with integral principal quantum numbers n ∈ N

located at a different center (see also [154, section 6]).
Slater-type functions are complete in all Hilbert spaces, which Guseinov implicitly used

(for an explicit proof, see [93, section 4]), but not orthogonal. Thus, Guseinov’s approach
corresponds to the transformation of an expansion in terms of a complete and orthogonal
function set to an expansion in terms a of a complete, but nonorthogonal function set.

Unfortunately, the completeness of a nonorthogonal function set in a Hilbert space does
not suffice to guarantee that an essentially arbitrary element of this Hilbert space can be
expanded in terms of this function set (the nonanalyticity of certain Laguerre series discussed
in this paper is just another confirmation of a much more general fact). This insufficiency is
well documented both in the mathematical literature (see, for example, [40, theorem 10, p 54]
or [81, section 1.4]) as well as in the literature on electronic structure calculations [90–95]),
but nevertheless frequently overlooked. Horrifying examples of nonorthogonal expansions
with pathological properties can be found in [91, section III.I].

Consequently, it is not at all obvious whether the mathematical manipulations, that
produced Guseinov’s rearranged one-range addition theorems, are legitimate and lead to
expansions that are mathematically meaningful. This has to be checked. So far, Guseinov has
categorically denied that there might be any problem with the legitimacy of his rearrangements
[73, pp 8 and 23–4].

Since Guseinov’s original addition theorems are expansions in terms of generalized
Laguerre polynomials, and since the radial parts of Slater-type functions are after the
cancellation of common exponentials nothing but powers, the results of this paper about
the analyticity of Laguerre series could in principle be used to investigate whether Guseinov’s
rearrangements are legitimate. For that purpose, it would be necessary to determine the
decay rates and the sign patterns of the coefficients of the generalized Laguerre polynomials
occurring in Guseinov’s original addition theorems.

Unfortunately, one-range addition theorems for Slater-type functions are fairly
complicated mathematical objects, and the coefficients of the generalized Laguerre
polynomials are according to (3.5) essentially three-dimensional overlap integrals. Thus, we
would be confronted with enormous and possibly even unsurmountable technical problems if
we try to analyze the decay rates and sign patters of the coefficients of these Laguerre series.

Fortunately, some insight can be gained by analyzing not the comparatively complicated
one-range addition theorems, but their much simpler one-center limits. These are also
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expansions in terms of generalized Laguerre polynomials, albeit with much simpler
coefficients. It will become clear later that this approach cannot answer all questions of
interest. Nevertheless, it is better than nothing since we can obtain at least some nontrivial
answers.

Let us now consider the one-center expansion of a Slater-type function χM
N,L(β, r) with

in general nonintegral principal quantum numbers N ∈ R\N in terms of Guseinov’s functions
k�

m
n,�(β, r) with equal scaling parameters β > 0 [155, equation (5.7)],

χM
N,L(β, r) = (2γ )−(k+3)/2

2N−1
�(N + L + k + 2)

∞∑
ν=0

(−N + L + 1)ν

[(ν + 2L + k + 2)!ν!]1/2 k�
M
ν+L+1,L(β, r),

N ∈ R\N, β > 0, k = −1, 0, 1, 2, . . . . (7.10)

If N ∈ N and N � L + 1, the infinite series on the right-hand side terminates because of the
Pochhammer symbol (−N + L + 1)ν .

Expansion (7.10), which corresponds to the one-center limit r′ = 0 of Guseinov’s one-
range addition theorem for χM

N,L(β, r ± r′) with equal scaling parameters, is a special case
of the Laguerre series (3.3) for zρ with in general nonintegral ρ ∈ R\N0. As discussed in
section 3, a rearrangement of the Laguerre series (3.3) for zρ is legitimate if and only if ρ is
a non-negative integer, i.e., if ρ = m ∈ N0. If ρ /∈ N0, z

ρ is not analytic at z = 0 and we
formally obtain the power series (3.7), which is not a mathematically meaningful object since
an infinite number of its power series coefficients are according to (3.9) infinite in magnitude.

Thus, in the case of equal scaling parameters β > 0, the one-center limit r′ = 0 of
Guseinov’s rearranged addition theorem for Slater-type functions χM

N,L(β, r ± r′) does not
exist if the principal quantum number N is nonintegral, i.e., if N ∈ R\N.

Let us now consider the one-center expansion of a Slater-type function χM
N,L(β, r) with

in general nonintegral principal quantum numbers N ∈ R\N in terms of Guseinov’s functions
k�

m
n,�(γ, r) with different scaling parameters β 	= γ > 0 [155, equation (5.9)],

χM
N,L(β, r) = (2γ )L+(k+3)/2βN−1

[β + γ ]N+L+k+2

�(N + L + k + 2)

(2L + k + 2)!

×
∞∑

ν=0

[
(ν + 2L + k + 2)!

ν!

]1/2

k�
M
ν+L+1,L(γ, r)

× 2F1

(
−ν,N + L + k + 2; 2L + k + 3; 2γ

β + γ

)
. (7.11)

Expansion (7.11), which corresponds to the one-center limit r′ = 0 of Guseinov’s one-range
addition theorem for χM

N,L(β, r ± r′) with different scaling parameters, is a special case of the
following Laguerre series [154, equation (6.12)]:

zρeuz = (1 − u)−α−ρ−1 �(α + ρ + 1)

�(α + 1)

∞∑
n=0

2F1

(
−n, α + ρ + 1;α + 1; 1

1 − u

)
L(α)

n (z),

ρ ∈ R\N0, Re(ρ + α) > −1, u ∈ (−∞, 1/2). (7.12)

This expansion can be derived with the help of (3.2). The condition −∞ < u < 1/2 is
necessary to guarantee its convergence in the mean with respect to the norm (2.6) of the
weighted Hilbert space L2

zα e−z ([0,∞)). For u = 0, the terminating Gaussian hypergeometric
series 2F1 can be expressed in closed form with the help of Gauss’ summation theorem [104,
p 40], and (7.12) simplifies to give (3.3).
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If we insert the explicit expression (2.1) of the generalized Laguerre polynomials into
(7.12) and interchange the order of summations, we also obtain a formal power series in z.
Unfortunately, an analysis of the resulting power series becomes very difficult because of the
terminating Gaussian hypergeometric series 2F1 in (7.12). An analysis of the behavior of this
2F1 as n → ∞ would most likely be a nontrivial research project in its own right. However,
we can argue that zρ exp(uz) is only analytic at z = 0 if ρ = m ∈ N0, yielding the expansion
zm exp(uz) = ∑∞

n=0 unzm+n/n!. If ρ is nonintegral, a power series expansion of zρ exp(uz)

about z = 0 does not exist.
Thus, also for different scaling parameters β 	= γ , the one-center limit r′ = 0 of the

rearranged addition theorems for χM
N,L(β, r ± r′) does not exist if the principal quantum

number N is nonintegral, i.e., if N ∈ R\N.
These observations are quite consequential: rearranged one-range addition theorems

for Slater-type functions χM
N,L(β, r ± r′) with nonintegral principal quantum numbers

N 	= 1, 2, . . . play a central role in numerous papers by Guseinov and coworkers on one-
range addition theorems [57, 59–72, 74–79].

By analyzing the rearrangement of the Laguerre series of the comparatively simple
functions zρ and zρ exp(uz), we could arrive at some conclusions about the legitimacy of
Guseinov’s approach. Nevertheless, some interesting questions are still open. For example, the
nonanalyticity arguments presented here allow no conclusions about the validity of Guseinov’s
rearrangements in the case of Slater-type functions with integral principal quantum numbers.

Another interesting but open question is whether Guseinov’s rearrangements produce
in the case of nonintegral principal quantum numbers one-range addition theorems that are
invalid for the whole argument set R

3 × R
3, or whether only the one-center limits of these

addition theorems are invalid. This is a practically very relevant question. If only the one-
center limits are invalid, then it would be conceivable that Guseinov’s rearranged one-range
addition theorems might be mathematically meaningful or possibly even numerically useful
in a restricted sense as approximations, although they do not exist for the whole argument
set R

3 × R
3. This remains to be investigated. But the burden of proof lies in all cases with

Guseinov.

8. Summary and conclusions

The generalized Laguerre polynomials belong to the so-called classical orthogonal
polynomials of mathematical physics, and they are characterized by the orthogonality
relationship (2.4) that involves an integration over the semi-infinite positive real axis.
Accordingly, generalized Laguerre polynomials can be used for the representation of functions
on unbounded domains, and in particular also for the representation of the radial parts of
functions f : R

3 → C expressed in terms of spherical polar coordinates.
It is generally accepted that expansions in terms of orthogonal polynomials have many

highly advantageous features. However, there is one undeniable drawback: normally,
expansions in terms of orthogonal polynomials converge in the mean with respect to the norm
of the corresponding Hilbert space, but not necessarily pointwise. Accordingly, orthogonal
expansions are not necessarily the best choice if the local properties of a function matter.
As documented by the popularity of Padé approximants, power series are also not free of
weaknesses, but at least in the vicinity of the expansion point, power series are normally very
convenient and very useful for an accurate description of the local properties of a function.
Therefore, the construction of power series expansions for functions defined by orthogonal
expansions should be of principal interest.
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This paper describes a complementary treatment of Laguerre series of the type of (1.1).
Normally, one starts from a known function f (z) belonging to the weighted Hilbert space
L2

zα e−z ([0,∞)) defined by (2.7), and one tries to determine the coefficients λ(α)
n via (1.1b) by

exploiting the orthogonality of the generalized Laguerre polynomials.
In this paper, it is instead assumed that only the Laguerre series coefficients λ(α)

n are
known, either in the form of explicit expressions or numerically, but not the function f (z).
With the help of the transformation formula (3.14), it is then possible to construct a formal
power series expansion of the unknown function represented by the Laguerre series.

This approach does not guarantee success since there are many functions which belong
to the Hilbert space L2

zα e−z ([0,∞)) but which are not analytic at the origin. A simple example
of such a nonanalytic function possessing a Laguerre series is the power function zρ with
nonintegral ρ ∈ R\N0. As discussed in section 3, it is possible to construct a formal power
series for zρ from its Laguerre series (3.3), but the resulting power series is mathematically
meaningless since it contains infinitely many power series coefficients that are infinite in
magnitude.

Thus, the key question is whether the power series for the unknown function obtained
via (3.14) is mathematically meaningless, or whether this power series represents an analytic
function in the sense of complex analysis. It seems that this question has not been treated
properly in the literature yet. I am only aware of short remarks by Gottlieb and Orszag [51,
p 42] and by Doha [43, p 5452], respectively, who had stated that a Laguerre series of the type
of (1.1) converges faster than algebraically if the function under consideration is analytic at
the origin. But this statement is imprecise and ignores the pivotal role played by divergent,
but summable inner μ series in (3.14). Some general aspects of the summation of divergent
series are reviewed in appendix A.

By analyzing the convergence properties of the inner μ series in (3.14), some simple
sufficient conditions can be formulated which guarantee that the resulting power series is
mathematically meaningful and represents an analytic function.

As discussed in section 5, the most benign situation occurs if the Laguerre series
coefficients λ(α)

n decay exponentially or even factorially as n → ∞. Then, the inner μ series
in (3.14) converge and the resulting power series is mathematically meaningful and represents
an analytic function. In this way, numerous generating functions for the generalized Laguerre
polynomials can be rederived easily.

As discussed in section 4, a much more interesting situation occurs if the coefficients
λ(α)

n decay algebraically in magnitude as n → ∞. If algebraically decaying coefficients
λ(α)

n ultimately have the same sign, the inner μ series in (3.14) diverge. This alone would not
necessarily be such a bad thing, but it is not possible to sum these divergent series to something
finite. Accordingly, the transformation formula (3.14) leads to a power series expansion having
infinitely many series coefficients that are infinite in magnitude. This simply means that a
power series of the type of (1.3) does not exist because the function under consideration is not
analytic at the origin. An example is the Laguerre series (3.3) for zρ : its series coefficients
decay algebraically in magnitude and ultimately all have the same sign. This observation
suffices to show once more that zρ is not analytic at the origin if ρ ∈ R\N0.

The situation changes radically if the coefficients λ(α)
n decay algebraically in magnitude

as n → ∞, but ultimately have strictly alternating signs. Then, the inner μ series in (3.14)
still do not converge, but now summation techniques can be used to associate finite values to
these divergent alternating series. In such a case, the formal power series obtained via (3.14)
is mathematically meaningful and represents an analytic function.

For example, the additional sign factor (−1)n introduced into the Laguerre series (3.3)
for zρ yields the Laguerre series (4.7). The insertion of (3.14) into (4.7) leads to divergent
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inner μ series which correspond to divergent hypergeometric series 1F0. But these series
can be summed by analytic continuation since they are special cases of the binomial series
(3.8). Thus, the transformation formula (3.14) ultimately produces according to (4.12) a
confluent hypergeometric series 1F1, which is an analytic function in every neighborhood
of the origin and which is also a known generating function of the generalized Laguerre
polynomials.

The summability approach pursued in section 4 can also be used in the case of Laguerre
series with more complicated coefficients. An example is the Laguerre series (4.21). The
application of the transformation formula (3.14) leads to divergent, but summable μ series
that can be expressed as a divergent Gaussian hypergeometric series 2F1. But again, the
summation of this divergent series is almost trivially simple because many convenient analytic
continuation formulae for a 2F1 are known.

Thus, the summation of a divergent inner μ series can be accomplished by explicit analytic
continuation formulae if it can be expressed either as a divergent binomial series 1F0 or as
a divergent Gaussian hypergeometric series 2F1. Unfortunately, this is no longer possible if
the μ series correspond to a divergent generalized hypergeometric series p+1Fp with p � 2.
As discussed in section 6, analytic continuation formulae for more complicated generalized
hypergeometric series are either not known at all or at least much more complicated than the
corresponding formulae for Gaussian hypergeometric series.

Thus, we can only hope to find convenient analytical expressions for power series
coefficients γn if the corresponding algebraically decaying and ultimately strictly alternating
Laguerre series coefficients λ(α)

n possess a very simple structure. But this is a typical limitation
of all analytical manipulations. As a viable alternative, we can try to use instead techniques
that accomplish a summation of divergent inner μ series by purely numerical means. Such an
approach has the additional advantage that it can be applied if only the numerical values of a
finite set of Laguerre series coefficients λ(α)

n are available.
In section 6, it is shown that certain nonlinear sequence transformations, whose properties

are reviewed in appendix B, are indeed able to sum divergent alternating hypergeometric
series p+1Fp with p � 1 quite effectively. It may be surprising for nonspecialists that the best
summation results were not obtained by Wynn’s celebrated epsilon algorithm (B.4), which
produces Padé approximants if the input data are the partial sums of a power series, but by the
Levin-type transformation (B.15).

In section 7, the legitimacy of the rearrangement of Guseinov’s one-range addition
theorems for Slater-type functions with in general nonintegral principal quantum numbers
is analyzed. Originally, Guseinov [55, 56, 58] had derived addition theorems for Slater-type
functions by expanding them in terms of the complete and orthonormal functions (7.6) whose
radial parts consist of generalized Laguerre polynomials. In the next step, Guseinov replaced
the functions (7.6) according to (7.9) by Slater-type functions with integral principal quantum
numbers, which are complete, but not orthogonal, and he also rearranged the order of the
resulting summations. In this way, Guseinov essentially replaced expansions in terms of
generalized Laguerre polynomials by power series expansions. Thus, the results of this paper
can in principle be used to check the legitimacy of Guseinov’s manipulations.

Since, however, one-range addition theorems for Slater-type functions are fairly
complicated mathematical objects, the necessary determination of the decay rates and the
sign patterns of the coefficients of the generalized Laguerre polynomials is very difficult.
Fortunately, one can gain at least some insight by analyzing not the complicated addition
theorems, but their much simpler one-center limits. In this way, it can for instance be shown that
Guseinov’s rearranged addition theorems for Slater-type functions with nonintegral principal
quantum numbers do not exist for the whole argument range R

3 × R
3.
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Appendix A. Divergent series

Divergent series have been a highly controversial topic that played a major role in the
development of mathematical analysis (see, for example, the paper by Burkhardt [28] or
the very recent book by Ferraro [46]), and even now there is still a lot of active research on
divergent series going on (see, for example, the recent monographs by Balser [4, 5], Boutet
de Monvel [19], Candelpergher et al [30] and Sternin and Shatalov [125], or the review by
Delabaere and Pham [41]).

As for instance discussed in papers by Barbeau [6], Barbeau and Leah [7], Kozlov [99]
and Varadarajan [135], already Euler had frequently used divergent series. Later, when
the concept of convergence was better understood, Euler’s admittedly somewhat informal
treatment of divergent series was criticized, and a strong tendency emerged to ban divergent
series completely from the realm of rigorous mathematics. This criticism culminated in Abel’s
famous quotation from the year 1828, which very well expressed the prevalent attitude of most
mathematicians during a large part of the nineteenth century and which can for instance
be found in Littlewood’s preface of Hardy’s posthumously published classic on divergent
series [80]:

Divergent series are the invention of the devil, and it is shameful to base on them any
demonstration whatsoever.

Although this disdain of divergent series was a temporary phenomenon of the nineteenth
century, its consequences are nevertheless felt today. As emphasized by Suslov [126, p 1191],
the standard university curricula in mathematical analysis were formulated in the middle of
the nineteenth century. But this was a time when divergent series were wrongly considered
to be essentially an aberration of the pre-rigorous mathematical past. As a consequence,
divergent series and their summation are not part of the regular training of mathematicians and
theoretical physicists, which in my opinion is totally inappropriate. In this context, a short
paper by Rubel [113] may also be of interest.

At the end of the nineteenth century it was clear that the attempts of mathematical
orthodoxy to reject divergent series as unfounded had failed. First, divergent series turned
out to be too useful to be abandoned. For example, many special functions possess so-called
asymptotic expansions which normally are factorially divergent inverse power series. In spite
of their divergence, suitably truncated asymptotic series can provide excellent approximations
at least for sufficiently large arguments.

Second, the work of mathematicians such as

• Poincaré, whose work in astronomy inspired him to formulate a mathematically rigorous
theory of asymptotic series that typically diverge factorially,

• Borel, who showed that factorially divergent series can be summed via Laplace-type
integral representations,

• Padé, who introduced his celebrated rational approximants that are often able to sum
divergent power series,

• Stieltjes, who showed that certain divergent series can be identified with continued
fractions,

ultimately led in the later part of the nineteenth century to a theory which made it possible to use
divergent series in a mathematically rigorous way. Even more important from a practical point
of view is that their work showed that divergent series can actually be used for computational
purposes if they are combined with suitable summation techniques.

In physics, divergent series are now indispensable. It is generally accepted that
perturbation theory is the most important systematic approximation procedure in theoretical
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physics. But already in 1952, Dyson [44] had argued that perturbation expansions in quantum
electrodynamics must diverge factorially, and since the seminal work of Bender and Wu on
the perturbation expansions of anharmonic oscillators [9, 10] it has been clear that quantum-
mechanical perturbation theory produces almost by default factorially divergent perturbation
expansions. A good source on divergent perturbation expansions in quantum mechanics and
in higher field theories is the book edited by Le Guillou and Zinn-Justin [101] where many of
the relevant papers are reprinted.

Even if we agree that divergent series are now indispensable in physics, we nevertheless
cannot expect that rigorously minded mathematicians are necessarily satisfied with the way
divergent series are typically used in physics. Quite instructive is the following remark by
Haldane from the year 1941, which is quoted in a book by Körner [98, p 426]:

Cambridge is full of mathematicians who have been so corrupted by quantum
mechanics that they use series which are clearly divergent, and not even proved
to be summable.

I think that the criticism, which is implicit in Haldane’s remark, cannot be dismissed lightly. Let
us for instance assume that we want to express a physical quantity by a divergent series, which
for example may be a factorially divergent Rayleigh–Schrödinger perturbation expansion.
Since divergent series are a priori mathematically undefined, we have to show that it is indeed
possible to associate something finite—the value of the physical quantity—to the divergent
series in a mathematically meaningful way, or to put it differently, we have to show that the
divergent series is summable to the correct finite result by an appropriate summation method.

Unfortunately, it is often extremely difficult to prove this rigorously. In such a situation,
physicists tend to rely on their intuition and do not bother to try to formulate difficult proofs.
Quite often, such a pragmatic approach is remarkably successful, but it should also be clear
that mathematicians do not necessarily like that. Intuition can be misleading. Therefore,
occasional unpleasant surprises and even catastrophic failures cannot be ruled out.

Appendix B. Sequence transformations

The fact that appropriate summation methods make it possible to use divergent series
for computational purposes raises the question which of the numerous known summation
techniques are best suited for the numerical evaluation of the divergent series occurring in this
paper. Typically, we are confronted with alternating series whose terms grow in magnitude
like a fixed power of the index. Based on my own practical experience, I propose to use
so-called sequence transformations, which are purely numerical techniques to transform a
slowly convergent or divergent sequence {sn}∞n=0 to another sequence {s ′

n}∞n=0 with hopefully
better convergence properties.

For those interested in the history of sequence transformations, I recommend a monograph
by Brezinski [23], which discusses earlier work starting from the seventeenth century until
1945, as well as two papers by Brezinski [24, 25], which emphasize more recent developments.

The basic assumption of all sequence transformations is that the elements of a slowly
convergent or divergent sequence {sn}∞n=0, which could be the partial sums sn = ∑n

k=0 ak of an
infinite series, can for all indices n be partitioned into a (generalized) limit s and a remainder
or truncation error rn according to

sn = s + rn, n ∈ N0. (B.1)

If the sequence {sn}∞n=0 converges to s, the remainders rn in (B.1) can be made negligible by
increasing n as much as necessary. But many sequences converge so slowly that this is not
feasible. Increasing the index n also does not help in the case of the divergent series.
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Alternatively, one can try to improve convergence or accomplish a summation by
computing approximations to the remainders rn which are then eliminated from the sequence
elements sn. At least conceptually, this is what a sequence transformation tries to do.

With the exception of a few practically more or less irrelevant model problems, sequence
transformations can only eliminate approximations to the remainders. Thus, the elements
of the transformed sequence {s ′

n}∞n=0 are also of the type of (B.1), which means that a
transformed sequence element s ′

n can also be partitioned into the same (generalized) limit
s and a transformed remainder r ′

n according to

s ′
n = s + r ′

n, n ∈ N0. (B.2)

The transformed remainders {r ′
n}∞n=0 are normally different from zero for all finite values of

n. However, convergence is accelerated if the transformed remainders {r ′
n}∞n=0 vanish more

rapidly than the original remainders {rn}∞n=0, and a divergent sequence is summed if the
transformed remainders vanish at all as n → ∞.

Before the invention of electronic computers, mainly linear sequence transformations
were used, which compute the elements of the transformed sequence {s ′

n}∞n=0 as weighted
averages of the elements of the input sequence {sn}∞n=0 according to

s ′
n =

n∑
k=0

μnksk. (B.3)

The theoretical properties of these matrix transformations are now very well understood and
discussed in books by Hardy [80], Knopp [96], Petersen [107], Peyerimhoff [108], Zeller
and Beekmann [169], Powell and Shah [110] and Boos [11]. Their main appeal lies in the
fact that based on the work of Toeplitz [131] some necessary and sufficient conditions for
the weights μnk in (B.3) could be formulated which guarantee that the application of such a
matrix transformation to a convergent sequence {sn}∞n=0 yields a transformed sequence {s ′

n}∞n=0
converging to the same limit s = s∞.

There are also some so-called Tauberian theorems which show rigorously that certain
orders of for example Hölder’s or Cesàro’s summation method are needed to sum a divergent
series whose terms grow in magnitude like a fixed power of the index [80, theorem 39,
p 95 and theorem 49, p 103]. Since the terms of the divergent inner μ series considered
in sections 4 and 6 all grow in magnitude like a fixed power of the index, it looks like
a natural idea to use either Hölder’s or Cesàro’s summation method for the summation of
these divergent series. Unfortunately, the situation is not so simple. Since we also want to
accomplish something useful if we only know a comparatively small number of numerically
determined Laguerre series coefficients λ(α)

n , we should focus our attention on those purely
numerical summation techniques that promise to be particularly efficient.

From a purely theoretical point of view, regularity is extremely desirable and greatly
facilitates the formulation of nice mathematical proofs, but from a practical point of view,
regularity is a serious disadvantage. This probably sounds paradoxical. However, Wimp
remarks in the preface of his book [166, p X] that the size of the domain of regularity of a
transformation and its efficiency seem to be inversely related. Accordingly, regular matrix
transformations are in general at most moderately powerful, and the popularity of most linear
transformations as computational tools has declined considerably in recent years.

Nonlinear sequence transformations have largely complementary properties: they are
nonregular, which means that the convergence of the transformed sequence is not guaranteed,
let alone to the correct limit. In addition, their theoretical properties are far from
being completely understood. Thus, from a purely theoretical point of view, nonlinear
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sequence transformations have many disadvantages, but they often accomplish spectacular
transformation results which are clearly beyond the reach of regular matrix transformations.
Consequently, nonlinear transformations now clearly dominate practical applications and—
albeit to a lesser extend—also theoretical work. Detailed treatments of their theoretical
properties and long lists of successful applications can be found in monographs by Brezinski
[20–22], Brezinski and Redivo Zaglia [26], Cuyt [36, 37], Cuyt and Wuytack [39], Delahaye
[42], Liem, Lü, and Shih [103], Marchuk and Shaidurov [105], Sidi [117], Walz [137] and
Wimp [166], or in reviews by Caliceti et al [29], Homeier [83] and myself [139].

In spite of their undeniable usefulness, nonlinear sequence transformations do not
necessarily get the attention they deserve, in particular in the more theoretically oriented
mathematical literature. For example, a (very) condensed review of the classical linear
summability methods associated with the names of Cesàro, Abel and Riesz can be found
in Zayed’s relatively recent book [168, chapter 1.11.1], but the more powerful and
computationally more useful nonlinear sequence transformations are not mentioned at all.
Apparently, many mathematicians still prefer to work on the theoretically very nice, but
computationally at most moderately powerful regular matrix transformations.

Nevertheless, there are encouraging signs that the situation is changing for the better,
and there are now several books that describe how nonlinear sequence transformations can
be employed effectively as computational tools. For example, the most recent (third) edition
of the book Numerical Recipes [111] now also discusses nonlinear sequence transformations
(for a discussion of the topics treated there and for further details, see [156]).

I can also recommend a recent book by Bornemann et al [18] on extreme digit hunting in
the context of some challenging problems of numerical analysis. For this extreme digit hunting,
the authors also use sequence transformations, whose basic theory is described compactly in
their appendix A. This appendix is too short to provide a reasonably complete and balanced
presentation of sequence transformation, but I think that a novice can benefit considerably
from reading it. I also like the extremely pragmatic approach of the authors of this book,
which is very uncommon among mathematicians. Probably, this is due to the fact that the
authors are not primarily interested in the mathematical theory of sequence transformations:
they only wanted to apply sequence transformations as computational tools in order to obtain
more precise results at tolerable computational costs.

Then, there is a very recent book by Gil et al [50] on the evaluation of special functions.
It discusses in addition to various other computational techniques also Padé approximants,
continued fractions and nonlinear sequence transformations which all facilitate the evaluation
of (power) series representations for special functions.

My own research shows that nonlinear sequence transformations can be extremely useful
in a large variety of different contexts. I applied them successfully in such diverse fields
as the evaluation of molecular multicenter integrals of exponentially decaying functions [54,
84, 124, 161, 164], the evaluation of special functions and related objects [86, 87, 139, 140,
142, 143, 146, 150, 151, 158, 165], the summation of strongly divergent quantum-mechanical
perturbation expansions [8, 33–35, 85, 88, 140, 141, 143–145, 147, 148, 150, 159, 160],
the prediction of unknown perturbation series coefficients [8, 85, 88, 148, 149], and the
extrapolation of quantum chemical crystal orbital and cluster electronic structure calculations
for oligomers to their infinite chain limits of stereoregular quasi-one-dimensional organic
polymers [32, 162, 163].

In view of all these examples, it is probably justified to claim that anybody involved in
computational work should have at least some basic knowledge about the power and also about
the shortcomings and limitations of nonlinear sequence transformations.
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Padé approximants [m/n]f (z) can be viewed to be a special class of nonlinear sequence
transformation since they convert the partial sums fn(z) = ∑n

k=0 γkz
k of a (formal) power

series for some function f (z) to a doubly indexed sequence of rational functions. As
documented by the long list of successful applications in the monograph by Baker and Graves-
Morris [3], Padé approximants are now almost routinely used in theoretical physics and in
applied mathematics to overcome problems with slowly convergent or divergent power series.
It is, however, not nearly so well known among nonspecialists that alternative sequence
transformations can at least for certain computational problems be much more effective than
Padé approximants.

The probably best known sequence transformation is Wynn’s epsilon algorithm [167],
which is defined by the following nonlinear recursive scheme:

ε
(n)
−1 = 0, ε

(n)
0 = sn, n ∈ N0, (B.4a)

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

, k, n ∈ N0. (B.4b)

The elements ε
(n)
2k with even subscripts provide approximations to the (generalized) limit s of

the sequence {sn}∞n=0 to be transformed, whereas the elements ε
(n)
2k+1 with odd subscripts are

only auxiliary quantities which diverge if the whole process converges. A compact FORTRAN
77 program for the epsilon algorithm as well as the underlying computational algorithm is
described in [139, section 4.3]. In [111, p 213], a translation of this FORTRAN 77 program
to C can be found.

If the elements of the input sequence {sn}∞n=0 are the partial sums fn(z) = ∑n
k=0 γkz

k of
the (formal) power series for some function f (z), then the epsilon algorithm with ε

(n)
0 = fn(z)

produces Padé approximants to f (z),

ε
(n)
2k = [n + k/k]f (z), k, n ∈ N0. (B.5)

But Wynn’s epsilon algorithm is not restricted to input data that are the partial sums of a
(formal) power series. Therefore, it is more general and more widely applicable than Padé
approximants. Moreover, the epsilon algorithm can be generalized to cover for example vector
sequences. A recent review can be found in [53].

Since the epsilon algorithm can be used for the computation of Padé approximants, it is
discussed in books on Padé approximants such as the one by Baker and Graves-Morris [3], but
there is also an extensive literature dealing directly with it. On page 120 of Wimps book [166]
it is mentioned that over 50 papers on the epsilon algorithm were published by Wynn alone,
and at least 30 papers by Brezinski. As a fairly complete source of references on the epsilon
algorithm, Wimp recommends Brezinski’s first book [20]. However, this book was published
in 1977, and since then many more papers on the theory or on applications of Wynn’s epsilon
algorithm have appeared. Thus, any attempt of providing a reasonably complete bibliography
would be beyond the scope of this paper.

In a convergence acceleration or summation process, it is usually a good idea to try to
use the available information as effectively as possible (possible exceptions to this rule are
discussed in [150]). Let us assume that a finite subset {s0, s1, . . . , sm} of sequence elements is
available. Then, those elements ε

(n)
2k of the epsilon table produced by (B.4) should be chosen

as approximations to the limit of the input sequence that have the highest possible subscript
or transformation order. Thus, if m ∈ N0 is even, m = 2μ, I use as approximation to the limit
of the input sequence the transformation [139, equation (4.3-4)]

{s0, s1, . . . , s2μ} → ε
(0)
2μ , (B.6)
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and if m ∈ N0 is odd, m = 2μ + 1, I use the transformation [139, equation (4.3-5)]

{s1, s2, . . . , s2μ+1} → ε
(1)
2μ . (B.7)

With the help of the notation �x for the integral part of x, which is the largest integer ν

satisfying ν � x, these two relationships can be combined into a single equation yielding
[139, equation (4.3-6)]

{sm−2�m/2, sm−2�m/2+1, . . . , sm} → ε
(m−2�m/2)
2�m/2 . (B.8)

Wynn’s epsilon algorithm is an example of a sequence transformation that uses as input
data only the elements of the sequence to be transformed. However, in some cases structural
information on the dependence of the sequence elements sn on the index n is available. For
example, it is well known that the truncation error of a convergent series with strictly alternating
and monotonously decreasing terms is bounded in magnitude by the first term not included
in the partial sum and that it possesses the same sign as this term (see, for instance, [96,
p 259]). The first term neglected is also the best simple estimate for the truncation error of
a strictly alternating nonterminating and thus diverging hypergeometric series 2F0(α, β;−z)

with α, β, z > 0 [31, theorem 5.12-5]. Such an information on the index dependence of the
truncation errors should be extremely helpful in a convergence acceleration or summation
process, but a sequence transformations like Wynn’s epsilon algorithm cannot benefit from it.

A convenient way of incorporating such an information into the transformation process
consists in the use of remainder estimates {ωn}∞n=0. Because of the additional information
contained in the remainder estimates, sequence transformations of that kind are potentially
very powerful as well as very versatile.

The best-known example of such a sequence transformation is Levin’s transformation
[102], which is generally considered to be a very powerful as well as very versatile sequence
transformation (see, for example, [26, 83, 122, 123, 139, 152] and references therein),

L (n)
k (β, sn, ωn) =

∑k
j=0(−1)j

(
k

j

)
(β+n+j)k−1

(β+n+k)k−1
sn+j

ωn+j∑k
j=0(−1)j

(
k

j

)
(β+n+j)k−1

(β+n+k)k−1
1

ωn+j

, k, n ∈ N0. (B.9)

Here, β > 0 is a shift parameter. The most obvious choice is β = 1, which is exclusively used
in this paper.

The numerator and denominator sums of L (n)
k (β, sn, ωn) can also be computed recursively

([139, equation (7.2-8)–(7.2-10)] or in [152, equation (3.11)]),

L
(n)
0 = un, n ∈ N0, (B.10a)

L
(n)
k+1 = L

(n+1)
k − (β + n)(β + n + k)k−1

(β + n + k + 1)k
L

(n)
k , k, n ∈ N0. (B.10b)

By choosing in (B.10a) either un = sn/ωn or un = 1/ωn, we obtain the numerator and
denominator sums of Levin’s transformation (B.9).

As discussed in more detail in [139, 152], Levin’s transformation is based on the implicit
assumption that the ratio [sn − s]/ωn can be expressed as a power series in 1/(n + β). A
different class of sequence transformations can be derived by assuming that [sn − s]/ωn can
be expressed as a so-called factorial series, yielding [139, equation (8.2-7)]

S (n)
k (β, sn, ωn) =

∑k
j=0(−1)j

(
k

j

)
(β+n+j)k−1

(β+n+k)k−1

sn+j

ωn+j∑k
j=0(−1)j

(
k

j

)
(β+n+j)k−1

(β+n+k)k−1

1
ωn+j

, k, n ∈ N0. (B.11)
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As in the case of Levin’s transformation. β > 0 is a shift parameter, and again, only β = 1
is considered in this paper. Formally, we obtain S (n)

k (β, sn, ωn) from L (n)
k (β, sn, ωn) if we

replace in (B.9) the powers (β + n + j)k−1 by Pochhammer symbols (β + n + j)k−1.
The numerator and denominator sums of S (n)

k (β, sn, ωn) can also be computed recursively
([139, equation (8.3-7)–(8.3-9)] or in [152, equation (3.12)]),

S
(n)
0 = un, n ∈ N0, (B.12a)

S
(n)
k+1 = S

(n+1)
k − (β + n + k − 1)(β + n + k)

(β + n + 2k − 1)(β + n + 2k)
S

(n)
k , k, n ∈ N0. (B.12b)

The initial values un = sn/ωn produce the numerators of the transformation (B.11), and the
initial values un = 1/ωn yield the denominators.

Both Levin’s sequence transformation (B.9) as well as the related transformation (B.11)
utilize the information contained in explicit remainder estimates {ωn}∞n=0 which should be
chosen in such a way that the ratio [sn − s]/ωn becomes a smooth function of n that can be
annihilated effectively by weighted finite difference operators (see, for example, [152, sections
II and IV], and references therein). Accordingly, the choice of the remainder estimates is of
utmost importance for the success or failure of a convergence acceleration or summation
process involving Levin-type transformations. In this respect, it may be interesting to note
that a symbolic approach for the construction of asymptotic estimates to the truncation errors
of series representations for special functions was recently developed in [153].

On the basis of purely heuristic arguments Levin [102] had suggested some simple
remainder estimates which according to experience work remarkably well in a large variety of
cases and which can also be used in the case of the sequence transformation (B.11). But the
best simple estimate for the truncation error of a strictly alternating convergent series is the
first term not included in the partial sum [96, p 259]. Moreover, the first term neglected is also
an estimate of the truncation error of a divergent hypergeometric series 2F0(a, b,−z) with
a, b, z > 0 [31, theorem 5.12-5]. Accordingly, Smith and Ford [122] proposed for sequences
of partial sums of alternating series the following remainder estimate:

ωn = �sn. (B.13)

The use of this remainder estimate in [102] and (B.11) yields the following variants of the
sequence transformations L (n)

k (β, sn, ωn) and S (n)
k (β, sn, ωn):

d
(n)
k (β, sn) = L (n)

k (β, sn,�sn), (B.14)

δ
(n)
k (β, sn) = S (n)

k (β, sn,�sn). (B.15)

If the elements of the input sequence {sn}∞n=0 are the partial sums fn(z) = ∑n
k=0 γkz

k of the
(formal) power series for some function f (z), then d

(n)
k (β, fn(z)) and δ

(n)
k (β, fn(z)) are ratios

of two polynomials in z of degrees k + n and k, respectively (for a detailed discussion of these
rational approximants, see [152, section VI]).

The transformations d
(n)
k (β, sn) and in particular also δ

(n)
k (β, sn) were found to be

remarkably powerful summation techniques for divergent series with strictly alternating terms.
Numerous successful applications of Levin’s sequence transformation (B.9) and of the related
transformation (B.11) and their variants in convergence acceleration and summation processes
are described in [152, pp 1210 and 1225]. It may be interesting to note that recently δ

(n)
k (β, sn)

has been used quite a lot in optics [12–17].
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In the case of the transformations (B.14) and (B.15), the approximation to the limit with
the highest transformation order is given by

{s0, s1, . . . , sm+1} → �(0)
m (β, s0), (B.16)

where �
(n)
k (β, sn) stands for either d

(n)
k (β, sn) or δ

(n)
k (β, sn).
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[23] Brezinski C 1991 History of Continued Fractions and Padé Approximants (Berlin: Springer)
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